K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2023

       A = 1 + 3 + 32 + 33 + 34 + ... + 32022

     3A = 3  + 32 + 33 + ... + 34 + ... + 32022 + 32023

3A - A = (3 + 32 + 33 + ... + 34 + 32022 + 32023) - (1 + 3+...+ 32022)

2A     = 3 + 32 + 33 + 34 + ... + 32022 + 32023 - 1 - 3 - ... - 32022

2A =  (3 - 3) + (32 - 32) + (34 - 34) + (32022 - 32022) + (32023 - 1)

2A = 32023 - 1 

 A  = \(\dfrac{3^{2023}-1}{2}\)

A = \(\dfrac{3^{2023}}{2}\) - \(\dfrac{1}{2}\)

B - A = \(\dfrac{3^{2023}}{2}\) - (\(\dfrac{3^{2023}}{2}\) - \(\dfrac{1}{2}\))

B - A = \(\dfrac{3^{2023}}{2}\) - \(\dfrac{3^{2023}}{2}\) + \(\dfrac{1}{2}\)

B - A = \(\dfrac{1}{2}\)

 

AH
Akai Haruma
Giáo viên
12 tháng 1 2019

Lời giải:

a)

\(A=1-3+3^2-3^3+3^4-3^5+..+3^{98}-3^{99}\)

\(=(1-3+3^2-3^3)+(3^4-3^5+3^6-3^7)+....+(3^{96}-3^{97}+3^{98}-3^{99})\)

\(=(1-3+3^2-3^3)+3^4(1-3+3^2-3^3)+...+3^{96}(1-3+3^2-3^3)\)

\(=(1-3+3^2-3^3)(1+3^4+...+3^{96})=-20(1+3^4+...+3^{96})\vdots 20\)

Vậy $A$ chia hết cho $20$

b)

\(A=1-3+3^2-3^3+3^4-3^5+...+3^{98}-3^{99}\)

\(3A=3-3^2+3^3-3^4+3^5-3^6+...+3^{99}-3^{100}\)

Cộng theo vế:
\(\Rightarrow A+3A=1-3^{100}\)

\(\Rightarrow A=\frac{1-3^{100}}{4}\)

7 tháng 1 2016

ƯCLN (a, b, c) = 2.3 = 6

24 tháng 9 2018

toán lp mấy z bn?

24 tháng 9 2018

vào youtube : shafou.com 

2 tháng 2 2017

Ta có: A=3+32+33+.....+320

A=3+(32+33+.....+320)

A=3+32.(1+3+.....+318)

Vì 3 chia hết cho 3;32.(1+3+.....+318) chia hết cho 3 =>  3+32.(1+3+.....+318) chia hết cho 3 hay A chia hết cho 3

Nếu Alà số chính phương thì A phải chia hết cho 3mà 32.(1+3+.....+318) chia hết cho 32;3 không chia hết cho32=>A ko chia hết cho 3=>A ko phải số chính phương.Vậy...

2 tháng 2 2017

A ko phải là số cp

31 tháng 1 2024

Lý thuyết: với toán tử % là phép lấy dư, khi đó:

 \(a^b\%m=\left(a\%10\right)^{b\%4}\%m\)

a) \(3^{2022}\%7=3^2\%7=2\)

b) \(62^{78}\%15=2^2\%15=4\)

c) \(3^{2023}\%10=3^3\%10=7\)

d) \(2^{2000}\%5=2^0\%5=1\)

31 tháng 1 2024

bạn ơi, dùng theo công thức đồng dư được không ?

9 tháng 12 2021

 số tự nhiên n  thỏa mãn : 2n - 1 - 2 - 22 - 23 - .....- 22020 = 1 là :

a. n=2020 

b. n=2021

c.n=2022

d.n=2023

DD
10 tháng 12 2021

\(A=1+2+2^2+2^3+...+2^{2020}\)

\(2A=2+2^2+2^3+2^4+...+2^{2021}\)

\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2021}\right)-\left(1+2+2^2+2^3+...+2^{2020}\right)\)

\(A=2^{2021}-1\)

\(2^n-A=1\)

\(\Leftrightarrow A=2^n-1\)

Suy ra \(n=2021\)

Chọn b. 

9 tháng 12 2021

 số tự nhiên n  thỏa mãn : 2n - 1 - 2 - 22 - 23 - .....- 22020 = 1 là :

a. n=2020 

b. n=2021

c.n=2022

d.n=2023