Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
\(A=1-3+3^2-3^3+3^4-3^5+..+3^{98}-3^{99}\)
\(=(1-3+3^2-3^3)+(3^4-3^5+3^6-3^7)+....+(3^{96}-3^{97}+3^{98}-3^{99})\)
\(=(1-3+3^2-3^3)+3^4(1-3+3^2-3^3)+...+3^{96}(1-3+3^2-3^3)\)
\(=(1-3+3^2-3^3)(1+3^4+...+3^{96})=-20(1+3^4+...+3^{96})\vdots 20\)
Vậy $A$ chia hết cho $20$
b)
\(A=1-3+3^2-3^3+3^4-3^5+...+3^{98}-3^{99}\)
\(3A=3-3^2+3^3-3^4+3^5-3^6+...+3^{99}-3^{100}\)
Cộng theo vế:
\(\Rightarrow A+3A=1-3^{100}\)
\(\Rightarrow A=\frac{1-3^{100}}{4}\)
Ta có: A=3+32+33+.....+320
A=3+(32+33+.....+320)
A=3+32.(1+3+.....+318)
Vì 3 chia hết cho 3;32.(1+3+.....+318) chia hết cho 3 => 3+32.(1+3+.....+318) chia hết cho 3 hay A chia hết cho 3
Nếu Alà số chính phương thì A phải chia hết cho 32 mà 32.(1+3+.....+318) chia hết cho 32;3 không chia hết cho32=>A ko chia hết cho 32 =>A ko phải số chính phương.Vậy...
Lý thuyết: với toán tử % là phép lấy dư, khi đó:
\(a^b\%m=\left(a\%10\right)^{b\%4}\%m\)
a) \(3^{2022}\%7=3^2\%7=2\)
b) \(62^{78}\%15=2^2\%15=4\)
c) \(3^{2023}\%10=3^3\%10=7\)
d) \(2^{2000}\%5=2^0\%5=1\)
số tự nhiên n thỏa mãn : 2n - 1 - 2 - 22 - 23 - .....- 22020 = 1 là :
a. n=2020
b. n=2021
c.n=2022
d.n=2023
\(A=1+2+2^2+2^3+...+2^{2020}\)
\(2A=2+2^2+2^3+2^4+...+2^{2021}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2021}\right)-\left(1+2+2^2+2^3+...+2^{2020}\right)\)
\(A=2^{2021}-1\)
\(2^n-A=1\)
\(\Leftrightarrow A=2^n-1\)
Suy ra \(n=2021\)
Chọn b.
số tự nhiên n thỏa mãn : 2n - 1 - 2 - 22 - 23 - .....- 22020 = 1 là :
a. n=2020
b. n=2021
c.n=2022
d.n=2023
A = 1 + 3 + 32 + 33 + 34 + ... + 32022
3A = 3 + 32 + 33 + ... + 34 + ... + 32022 + 32023
3A - A = (3 + 32 + 33 + ... + 34 + 32022 + 32023) - (1 + 3+...+ 32022)
2A = 3 + 32 + 33 + 34 + ... + 32022 + 32023 - 1 - 3 - ... - 32022
2A = (3 - 3) + (32 - 32) + (34 - 34) + (32022 - 32022) + (32023 - 1)
2A = 32023 - 1
A = \(\dfrac{3^{2023}-1}{2}\)
A = \(\dfrac{3^{2023}}{2}\) - \(\dfrac{1}{2}\)
B - A = \(\dfrac{3^{2023}}{2}\) - (\(\dfrac{3^{2023}}{2}\) - \(\dfrac{1}{2}\))
B - A = \(\dfrac{3^{2023}}{2}\) - \(\dfrac{3^{2023}}{2}\) + \(\dfrac{1}{2}\)
B - A = \(\dfrac{1}{2}\)