Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=0\Leftrightarrow xy+yz+zx=0\)
Đặt \(\hept{\begin{cases}xy=a\\yz=b\\zx=c\end{cases}\Rightarrow a+b+c=0}\)
Ta có: \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\Leftrightarrow a^3+b^3+c^3=3abc\)
Ta lại có:
\(\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{zx}{y^2}=\frac{\left(xy\right)^3+\left(yz\right)^3+\left(zx\right)^3}{x^2y^2z^2}\)
\(=\frac{a^3+b^3+c^3}{abc}=\frac{3abc}{abc}=3\)
1/x + 1/y + 1/z = 0 suy ra xy + yz + zx = 0
N = \(\frac{\left(yz\right)^3+\left(zx\right)^3+\left(xy\right)^3}{x^2y^2z^2}\)
Ta cm bài toán sau : nếu a + b +c = 0 thì a 3 + b3 + c3 = 3abc
thật vậy a3 + b3 + c3 = ( a + b + c)3 - 3(a + b)(b + c)(c + a) = - 3(-c)(-a)(-b) = 3abc
Do đó N = \(\frac{3x^2y^2z^2}{x^2y^2z^2}=3\)
2) \(x=y+1\Rightarrow x-y=1\)
\(\Rightarrow\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)=x^8-y^8\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)=x^8-y^8\)
\(\Leftrightarrow\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)=x^8-y^8\)
\(\Leftrightarrow\left(x^4-y^4\right)\left(x^4+y^4\right)=x^8-y^8\)
\(\Leftrightarrow x^8-y^8=x^8-y^8\)(đúng)
Vậy \(\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)=x^8-y^8\)(đpcm)
Ta có: \(x+y+z=0\)
\(\Leftrightarrow\) \(\left(x+y+z\right)^2=0\)
\(\Leftrightarrow\)\(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
\(\Leftrightarrow\)\(x^2+y^2+z^2=0\) (vì xy + yz + xz =0)
\(\Leftrightarrow\)\(x=y=z=0\)
Vậy \(S=\left(0-1\right)^{1999}+0^{2003}+\left(0+1\right)^{2006}=0\)
\(x^2+1\ge2x\) ; \(y^2+1\ge2y\); \(z^2+1\ge2z\)
\(2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)
Cộng vế với vế các BĐT trên:
\(3x^2+3y^2+3z^3+3\ge2\left(x+y+z+xy+yz+zx\right)=12\)
\(\Rightarrow x^2+y^2+z^2\ge\frac{12-3}{3}=3\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Vì xy + yz + xz = 0 nên 2 (xy + yz + xz) = 0
Vì x + y + z = 0 nên (x+y+z)^2 =0
suy ra x^2 + y^2 + z^2 + 2 (xy+yz+xz) = 0
suy ra x^2 + y^2 + z^2 = 0
suy ra x = y = z = 0
Thay vào S, ta được:
S = (0-1)^1995 + 0^1996 + (z+1)^1997 = (-1) + 0 + 1 = 0
Vậy S = 0
Vì xy + yz + xz = 0 nên 2 (xy + yz + xz) = 0
Vì x + y + z = 0 nên (x+y+z)^2 =0
suy ra x^2 + y^2 + z^2 + 2 (xy+yz+xz) = 0
suy ra x^2 + y^2 + z^2 = 0
suy ra x = y = z = 0
Thay vào S, ta được:
S = (0-1)^1995 + 0^1996 + (z+1)^1997 = (-1) + 0 + 1 = 0
Vậy S = 0
1/x^2+1/y^2+1/z^2=1/xy+1/yz+1/zx
2:(1/x^2+1/y^2+1/z^2)=2:(1/xy+1/yz+1/zx)
2x^2+2y^2+2z^2=2xy+2yz+2xz
2x^2+2y^2+2z^2-2xy-2yz-2xz=0
(x^2-2xy+y^2)+(x^2-2xz+z^2)+(y^2-2yz+z^2)=0
(x-y)^2+(x-z)^2+(y-z)^2=0
=> (x-y)^2=0 và (x-z)^2=0 và (y-z)^2=0
=> x-y=0 và x-z=0 và y-z=0
=> x=y và x=z và y=z
=> x=y=z (đpcm)