Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Δ}=\left(2m-1\right)^2-8\left(m-1\right)\)
\(=4m^2-4m+1-8m+8\)
\(=4m^2-12m+9=\left(2m-3\right)^2\)
Để phương trình có hai nghiệm phân biệt thì 2m-3<>0
hay m<>3/2
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}3x_1-4x_2=11\\x_1+x_2=\dfrac{-2m+1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\2x_1+2x_2=-2m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\4x_1+4x_2=-4m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x_1=-4m+13\\4x_2=3x_1-11\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-4m+13}{7}\\4x_2=\dfrac{-12m+36}{7}-\dfrac{77}{7}=\dfrac{-12m-41}{7}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-4m+13}{7}\\x_2=\dfrac{-12m-41}{28}\end{matrix}\right.\)
Theo Vi-et, ta được: \(x_1x_2=\dfrac{m-1}{2}\)
\(\Leftrightarrow\dfrac{\left(4m-13\right)\left(12m+41\right)}{196}=\dfrac{m-1}{2}\)
\(\Leftrightarrow\left(4m-13\right)\left(12m+1\right)=98\left(m-1\right)\)
\(\Leftrightarrow48m^2+4m-156m-13-98m+98=0\)
\(\Leftrightarrow48m^2-250+85=0\)
Đến đây bạn chỉ cần giải pt bậc hai là xong rồi
\(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=4m^2-12m+10\)
\(=\left(2m-3\right)^2+1>0\)
Vậy pt có 2 nghiệm pb
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-2m}{2}\left(1\right)\\x_1x_2=\dfrac{m-1}{2}\left(2\right)\end{matrix}\right.\)
Ta có \(3x_1-4x_2=11\left(3\right)\)
Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}4x_1+4x_2=2-4m\\3x_1-4x_2=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x_1=13-4m\\x_2=\dfrac{1-2m}{2}-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{13-4m}{7}\\x_2=\dfrac{1-2m}{2}-\dfrac{13-4m}{7}\end{matrix}\right.\)
\(x_2=\dfrac{7-14m-26+8m}{14}=\dfrac{-19-6m}{14}\)
Thay vào (2) ta được \(\left(\dfrac{13-4m}{7}\right)\left(\dfrac{-19-6m}{14}\right)=\dfrac{m-1}{2}\)
\(\Leftrightarrow m=4,125\)
a) Thay x=-1 vào pt có:5+m=0 <=> m=-5
Thay m=-5 vào pt có:\(x^2-4x-5=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
Vậy nghiệm còn lại là 5
b) Để pt có hai nghiệm <=> \(\Delta\ge\) <=>\(16-4m\ge0\) <=>\(m\le4\)
Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m\end{matrix}\right.\)
Có \(\left(3x_1+1\right)\left(3x_2+1\right)=4\)
\(\Leftrightarrow9x_1x_2+3\left(x_1+x_1\right)+1=4\)
\(\Leftrightarrow9m+3.4+1=4\)
\(\Leftrightarrow m=-1\) (thỏa)
Vậy m=-1
a) `x=-1` là nghiệm `=> (-1)^2-4.(-1)+m=0 <=> m=-5`
`=>` PT: `x^2-4x-5=0 =>` Nghiệm còn lại là: `x=5`
b) PT có 2 nghiệm phân biệt `<=> \Delta'>0 <=> 2^2-m>0 <=> m < 4`
Viet: `x_1+x_2=4`
`x_1x_2=m`
Theo đề: `(3x_1+1)(3x_2+1)=4`
`<=> 3x_1x_2+3(x_1+x_2)+1=4`
`<=> 3m+3.4+1=4`
`<=> m=-9`
Vậy `m=-9`.
\(\Delta'=m-1\ge0\Rightarrow m\ge1\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m+1\end{matrix}\right.\)
\(A=x_1x_2-\left(x_1+x_2\right)\)
\(=m^2-3m+1\)
Biểu thức này ko có max, chỉ có min, chắc bạn ghi ko đúng đề
\(\Delta=\left(m+2\right)^2+8m=m^2+12m+4>0\) \(\Rightarrow\left[{}\begin{matrix}m< -6-4\sqrt{2}\\m>-6+4\sqrt{2}\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=-2m\end{matrix}\right.\)
Kết hợp Viet và điều kiện đề bài ta có hệ:
\(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1+4x_2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{4\left(m+2\right)}{3}\\x_2=-\frac{m+2}{3}\end{matrix}\right.\)
Mặt khác \(x_1x_2=-2m\Rightarrow\frac{2\left(m+2\right)^2}{9}=m\)
\(\Leftrightarrow2m^2-m+8=0\) (vô nghiệm)
Không tồn tại m thỏa mãn
a: Khi m=1/2 thì \(x^2-2x-\dfrac{1}{4}-4=0\)
\(\Leftrightarrow x^2-2x-\dfrac{17}{4}=0\)
\(\Leftrightarrow4x^2-8x-17=0\)
\(\Leftrightarrow\left(2x-2\right)^2=21\)
hay \(x\in\left\{\dfrac{\sqrt{21}+2}{2};\dfrac{-\sqrt{21}+2}{2}\right\}\)
b: \(\text{Δ}=\left(-2\right)^2-4\left(-m^2-4\right)\)
\(=4+4m^2+16=4m^2+20>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt