Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M>\dfrac{x}{x+y+z+t}+\dfrac{y}{x+y+z+t}+\dfrac{z}{x+y+z+t}+\dfrac{t}{x+y+z+t}=1\)
\(\dfrac{a}{b}< 1\Rightarrow\) \(\dfrac{a}{b}< \dfrac{a+m}{b+m}\) (Bạn chứng minh qua nhân chéo nhé)
\(\Rightarrow M< \dfrac{x+t}{x+y+z+t}+\dfrac{y+z}{x+y+z+t}+\dfrac{z+x}{x+y+z+t}+\dfrac{t+y}{x+y+z+t}=2\)
Do \(1< M< 2\) mà \(1\) và \(2\) là hai số tự nhiên liên tiếp
\(\Rightarrow M\notin\) N
Tuy không hoàn toàn giống nhưng bạn tham khảo rồi chứng minh tương tự nhé !
https://hoc24.vn/hoi-dap/question/459079.html
Ta có:
\(\dfrac{x}{x+y+z+t}< \dfrac{x}{x+y+z}< \dfrac{x}{x+y}\)
\(\dfrac{y}{x+y+z+t}< \dfrac{y}{x+y+t}< \dfrac{y}{x+y}\)
\(\dfrac{z}{x+y+z+t}< \dfrac{z}{y+z+t}< \dfrac{z}{z+t}\)
\(\dfrac{t}{x+y+z+t}< \dfrac{t}{x+z+t}< \dfrac{t}{z+t}\)
Cộng vế với vế ta được:
\(\Rightarrow\dfrac{x+y+z+t}{x+y+z+t}< \dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}< \dfrac{x+y}{x+y}+\dfrac{z+t}{z+t}\)
\(\Rightarrow1< \dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}< 2\)
\(\Rightarrow1< M< 2\)
=> M không là số tự nhiên
\(M=\dfrac{x}{x+y+z}=\dfrac{y}{x+y+t}=\dfrac{z}{y+z+t}=\dfrac{z}{x+z+t}\)\(\dfrac{x}{x+y+z}< 1\Rightarrow\dfrac{x+t}{x+y+z+t}>\dfrac{x}{x+y+z}\)
\(Tương\)\(tự\):\(\Rightarrow M< \dfrac{2\left(x+y+z+t\right)}{x+y+z+t}\)
\(Ta\) \(có\):\(2>M>1\)
\(\Rightarrow M\notin N\)\(sao\)
\(A=\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}\)
Giả sử \(A\in N\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{x+y+z}\in N\\\dfrac{y}{x+y+t}\in N\\\dfrac{z}{y+z+t}\in N\\\dfrac{t}{x+z+t}\in N\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x⋮x+y+z\\y⋮x+y+t\\z⋮y+z+t\\t⋮x+z+t\end{matrix}\right.\)
Vì \(x;y;z;t\in N\circledast\) nên:
\(\left\{{}\begin{matrix}x\ge x+y+z\\y\ge x+y+t\\z\ge y+z+t\\t\ge x+z+t\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-x\ge x+y+z-x\\y-y\ge x+y+t-y\\z-z\ge y+z+t-z\\t-t\ge x+z+t-t\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y+z\le0\\x+t\le0\\y+t\le0\\x+z\le0\end{matrix}\right.\)
Vì \(x;y;z;t\in N\circledast\) nên những điều trên không thể xảy ra
\(\Rightarrow\) điều giả sử sai,\(A\notin N\left(đpcm\right)\)
Ta có : \(1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\right)>1-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)=1-\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)=1-\left(1-\dfrac{1}{100}\right)=1-1+\dfrac{1}{100}=\dfrac{1}{100}\)
Vậy \(1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-.......-\dfrac{1}{100^2}>\dfrac{1}{100}\)
Xét \(\dfrac{x}{x+y+z+t}< \dfrac{x}{x+y+z}< \dfrac{x}{x+y}\)
\(\dfrac{y}{x+y+t+z}< \dfrac{y}{x+y+t}< \dfrac{y}{x+y}\)
\(\dfrac{z}{y+z+t+x}< \dfrac{z}{y+z+t}< \dfrac{z}{z+t}\)
\(\dfrac{t}{x+z+t+y}< \dfrac{t}{x+z+t}< \dfrac{t}{z+t}\)
Cộng cả ba vế , ta được :
\(\dfrac{x}{x+y+z+t}+\dfrac{y}{x+y+z+t}+\dfrac{z}{x+y+z+t}+\dfrac{t}{x+y+z+t}< \dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}< \dfrac{x}{x+y}+\dfrac{y}{x+y}+\dfrac{z}{z+t}+\dfrac{t}{z+t}\)
\(\Rightarrow\dfrac{x+y+z+t}{x+y+z+t}< M< \dfrac{x+y}{x+y}+\dfrac{z+t}{z+t}\)
\(\Rightarrow1< M< 2\)
Vậy M không phải số tự nhiên
Từ \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
\(\Rightarrow\dfrac{x}{y+z+t}+1=\dfrac{y}{z+t+x}+1=\dfrac{z}{t+x+y}+1=\dfrac{t}{x+y+z}+1\)
\(\Rightarrow\dfrac{x+y+z+t}{y+z+t}=\dfrac{x+y+z+t}{z+t+x}=\dfrac{x+y+z+t}{t+x+y}=\dfrac{x+y+z+t}{x+y+z}\)
Vì \(x+y+z+t\ne0\) nên ta đi xét \(x+y+z+t=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=-\left(z+t\right)\\y+z=-\left(t+x\right)\\z+t=-\left(x+y\right)\\t+x=-\left(y+z\right)\end{matrix}\right.\). Khi đó
\(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=4\)
a) Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\)
=> ad = bc
Ta có : (a + 2c)(b + d)
= a(b + d) + 2c(b + d)
= ab + ad + 2cb + 2cd (1)
Ta có : (a + c)(b + 2d)
= a(b + 2d) + c(b + 2b)
= ab + a2d + cb + c2b
= ab + c2d + ad + c2b (Vì ad = cd) (2)
Từ (1),(2) => (a + 2c)(b + d) = (a + c)(b + 2d) (ĐPCM)
Sửa đề bài : P = \(\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\)
Ta có : \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
=> \(\dfrac{y+z+t}{x}=\dfrac{z+t+x}{y}=\dfrac{t+x+y}{z}=\dfrac{x+y+z}{t}\)
=> \(\dfrac{y+z+t}{x}+1=\dfrac{z+t+x}{y}+1=\dfrac{t+x+y}{z}+1=\dfrac{x+y+z}{t}+1\)=> \(\dfrac{y+z+t+x}{x}=\dfrac{z+t+x+y}{y}=\dfrac{t+x+y+z}{z}=\dfrac{x+y+z+t}{t}\)TH1: x + y + z + t # 0
=> x = y = z = t
Ta có : P = \(\dfrac{x+y}{z+t}=\dfrac{y+z}{t+x}=\dfrac{z+t}{x+y}=\dfrac{t+x}{y+z}\)
P = \(\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}\)
P = 1 + 1 + 1 + 1 = 4
TH2 : x + y + z + t = 0
=> x + y = -(z + t)
y + z = -(t + x)
z + t = -(x + y)
t + x = -(y + z)
Ta có : P = \(\dfrac{x+y}{z+t}=\dfrac{y+z}{t+x}=\dfrac{z+t}{x+y}=\dfrac{t+x}{y+z}\)
P = \(\dfrac{-\left(z+t\right)}{z+t}=\dfrac{-\left(t+x\right)}{t+x}=\dfrac{-\left(x+y\right)}{x+y}=\dfrac{-\left(y+z\right)}{y+z}\)
P = (-1) + (-1) + (-1) + (-1)
P = -4
Vậy ...
* Nếu x = y = z = t; vẫn thỏa gt: \(\dfrac{x}{y+z+t}\) = \(\dfrac{y}{x+z+t}\) = \(\dfrac{z}{y+x+t}\) = \(\dfrac{t}{y+z+x}\) = \(\dfrac{1}{3}\)
=> P = \(\dfrac{2x}{2x}+\dfrac{2x}{2x}+\dfrac{2x}{2x}+\dfrac{2x}{2x}=4\)
* Nếu có ít nhất 2 số khác nhau, giả sử x # y. tính chất tỉ lệ thức:
\(\dfrac{x}{y+z+t}\) \(=\dfrac{y}{x+z+t}=\dfrac{x-y}{y+z+t-x-z-t}=\dfrac{x-y}{y-x}=-1\)
\(\rightarrow x=-y+z+t\rightarrow x+y+z+t=0\)
=>
{ x+y = -(z+t) ---- { (x+y)/(z+t) = -1
{ y+z = -(t+x) => { (y+z)/(t+x) = -1
{ z+t = -(x+y) ---- { (z+t)/(x+y) = -1
{ t+x = -(z+y) ---- { (t+x)/(z+y) = -1
=> P = -1 -1 -1 -1 = -4
Vậy P có giá trị nguyên
Ta có:\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
\(\Rightarrow\dfrac{x}{y+z+t}+1=\dfrac{y}{z+t+x}+1=\dfrac{z}{t+x+y}+1=\dfrac{t}{x+y+z}+1\)
\(\Rightarrow\dfrac{x+y+z+t}{y+z+t}=\dfrac{y+z+t+x}{z+t+x}=\dfrac{z+t+x+y}{t+x+y}=\dfrac{t+x+y+z}{x+y+z}\)
*Xét: \(x+y+z+t\ne0\Rightarrow z=y=z=t,\)khi đó:\(P=1+1+1+1=4\)
* Xét \(x+y+z+t=0\Rightarrow x+y=-\left(z+t\right);y+z=-\left(t+x\right);z+t=-\left(x+y\right);t+z=\left(-y+z\right)\)Khi đó: \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
Vậy P luôn luôn có giá trị nguyên
CM: M>1
\(M=\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}\\ >\dfrac{x}{x+y+z+t}+\dfrac{y}{x+y+z+t}+\dfrac{z}{x+y+z+t}+\dfrac{t}{x+y+z+t}=1\left(\text{đ}pcm\right)\)
cm : M<2
\(M< \dfrac{x}{x+y}+\dfrac{y}{x+y}+\dfrac{z}{z+t}+\dfrac{t}{z+t}=1+1=2\left(\text{đ}pcm\right)\)
Vì 1<M<2 nên M không phải là số tự nhiên