Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(5x+5y+5z\right)^2-\left(25xy+25yz+25zx\right)\)
\(=25\left(\left(x+y+z\right)^2-\left(xy+yz+zx\right)\right)\)
Xét : \(\left(x+y+z\right)^2-\left(xy+yz+zx\right)=0\)
\(=>x^2+y^2+z^2+2xy+2yz+2zx-xy-yz-zx=0\)
\(=>x^2+y^2+z^2+xy+yz+zx=0\)
Nhân biểu thức với 2 ta được:
\(2x^2+2y^2+2z^2+2xy+2yz+2zx=0\)
\(=>\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2=0\)
\(=>x+y=y+z=z+x=0\)
Vạy để phân thức A xác định thì x,y,z không đồng thời bằng 0;
CHÚC BẠN HỌC TỐT...
Chứng minh \(x^2+y^2+z^2\ge xy+yz+xz\), Dấu "=" khi \(x=y=z\)
\(bdt\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2xz\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x,y,z\in R\)
Dấu "=" khi \(\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=y\\y=z\\z=x\end{cases}\)\(\Leftrightarrow x=y=z\)
Áp dụng vào bài ta có:
\(A=x^2+y^2+z^2\ge xy+yz+xz=12\)
Dấu "=' xảy ra khi \(\begin{cases}x=y=z\\xy+yz+xz=12\end{cases}\)\(\Leftrightarrow x=y=z=\pm2\)
Vậy \(Min_A=12\) khi \(x=y=z=\pm2\)
Áp dụng BĐT Cosi ta có: \(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}\cdot\frac{yz}{x}}=2y\left(1\right)\)
Tương tự ta cũng có: \(\frac{yz}{x}+\frac{xz}{y}\ge2z\left(2\right);\frac{xz}{y}+\frac{xy}{z}\ge2x\)
Cộng (1),(2),(3) vế theo vế ta được;
\(2\left(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\right)\ge2\left(x+y+z\right)=2.2019=4038\)
\(\Rightarrow2P\ge4038\)
\(\Rightarrow P\ge2019\)
Dấu "=" xảy ra khi x = y = z = 673
Vậy Pmin = 2019 khi x = y = z = 673
Ta chứng minh: \(x^2+y^2+z^2\ge xy+yz+zx\)
Thật vậy \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x,y,z\)
\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(\Rightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)
\(\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\left(đpcm\right)\)
Áp dụng BĐT Svacxo, ta có:
\(\text{ Σ}_{cyc}\frac{1}{1+xy}\ge\frac{\left(1+1+1\right)^2}{3+xy+yz+zx}=\frac{9}{3+xy+yz+zx}\)
\(\ge\frac{9}{3+x^2+y^2+z^2}\ge\frac{9}{3+3}=\frac{3}{2}\)
(Dấu "="\(\Leftrightarrow x=y=z=1\))
Theo hệ quả của bất đẳng thức Cauchy ta có :
\(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)
Do \(x^2+y^2+z^2\le3\)
\(\Rightarrow3\ge3\left(xy+yz+xz\right)\)
\(\Rightarrow1\ge xy+yz+xz\)
\(\Rightarrow4\ge xy+yz+xz+3\)
\(\Rightarrow\frac{9}{4}\le\frac{9}{3+xy+xz+yz}\left(1\right)\)
Ta có : \(C=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\)
Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow C=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\ge\frac{9}{3+xy+yz+xz}\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow C=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\ge\frac{9}{4}\)
Vậy \(C_{min}=\frac{9}{4}\)
Dấu " =" xảy ra khi \(x=y=z=\sqrt{\frac{1}{3}}\)
Chúc bạn học tốt !!!
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=0\Rightarrow\frac{x+y+z}{xyz}=0\Rightarrow x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)
\(N=\frac{x^2}{yz}+\frac{y^2}{zx}+\frac{z^2}{xy}=\frac{x^3+y^3+z^3}{xyz}=\frac{3xyz}{xyz}=3\)
Vì xy + yz + zx = 1 ta có :
\(\frac{x-y}{z^2+1}+\frac{y-z}{x^2+1}+\frac{z-x}{y^2+1}=\frac{x-y}{z^2+xy+yz+zx}+\frac{y-z}{x^2+xy+yz+zx}+\frac{z-x}{y^2+xy+yz+zx}\)
\(=\frac{x-y}{\left(y+z\right)\left(z+x\right)}+\frac{y-z}{\left(x+y\right)\left(x+z\right)}+\frac{z-x}{\left(y+z\right)\left(x+y\right)}\)
\(=\frac{\left(x-y\right)\left(x+y\right)+\left(y-z\right)\left(y+z\right)+\left(x+z\right)\left(z-x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(=\frac{x^2-y^2+y^2-z^2+z^2-x^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{0}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=0\)(ĐPCM)