K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2019

1/Vì x,y,z là số chính phương nên x,y,z chia 3 dư 0 hoặc 1 và x,y,z chia 4 dư 0 hoặc 1 (tự CM) 

TH1: x,y,z chia 3 dư 0 hoặc 1

Có: (x-y)(y-z)(z-x)

Vì x,y,z chia 3 dư 0 hoặc 1 nên có ít nhất 1 số chia hết cho 3

Suy ra: (x-y)(y-z)(z-x) chia hết cho 3 (1)

Tương tự: (x-y)(y-z)(z-x) chia hết cho 4 (2)

Từ (1) và (2)

Vậy (x-y)(y-z)(z-x) chia hết cho 12

2/ Có: 

\(4m^2+m=5n^2+n\)

\(\Leftrightarrow5m^2-5n^2+m-n=m^2\)

\(\Leftrightarrow5\left(m-n\right)\left(m+n\right)+\left(m-n\right)=m^2\)

\(\Leftrightarrow\left(m-n\right)\left(5m+5n+1\right)=m^2\)

Do đó: để CM m-n và 5m+5n+1 là scp thì chúng phải là 2 số nguyên tố cùng nhau

Gọi d là \(ƯCLN\left(m-n;5m+5n+1\right)\)

Do đó: \(\hept{\begin{cases}m-n⋮d\\5m+5n+1⋮d\end{cases}\Leftrightarrow m^2⋮d^2}\Leftrightarrow m⋮d\)

Suy ra: \(n⋮d\)

Hay: \(5m+5n⋮d\)

Mà \(5m+5n+1⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vì thế m-n và 5m+5n+1 là 2 số nguyên tố cùng nhau

Vậy KL.....

AH
Akai Haruma
Giáo viên
12 tháng 5 2018

Lời giải:

Ta cần chứng minh \(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\geq x^2+y^2+z^2\)

\(\Leftrightarrow \frac{x^2y^2+y^2z^2+z^2x^2}{xyz}\geq \sqrt{3(x^2+y^2+z^2)}\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2\geq xyz\sqrt{3(x^2+y^2+z^2)}\)

\(\Leftrightarrow (x^2y^2+y^2z^2+z^2x^2)^2\geq 3x^2y^2z^2(x^2+y^2+z^2)\)

\(\Leftrightarrow x^4y^4+y^4z^4+z^4x^4+2x^2y^2z^2(x^2+y^2+z^2)\geq 3x^2y^2z^2(x^2+y^2+z^2)\)

\(\Leftrightarrow x^4y^4+y^4z^4+z^4x^4\geq x^2y^2z^2(x^2+y^2+z^2)\)

\(\Leftrightarrow \frac{1}{2}\left[ (x^2y^2-y^2z^2)^2+(y^2z^2-x^2z^2)^2+(x^2y^2-x^2z^2)^2\right]\geq 0\)

(luôn đúng)

Do đó ta có đpcm.

Dấu bằng xảy ra khi \(x=y=z=1\)

31 tháng 10 2019

ủa,\(2\left(xy-yz+zx\right)\) mới đúng chứ nhể ?

\(x^2=\left(y+z\right)^2=y^2+2yz+z^2\Rightarrow2yz=x^2-y^2-z^2\)

\(x=y+z\Rightarrow x-y=z\Rightarrow x^2-2xy+y^2=z^2\Rightarrow x^2+y^2-z^2=2xy\)

\(x=y+z\Rightarrow y=x-z\Rightarrow y^2=x^2-2xz+z^2\Rightarrow x^2+z^2-y^2=2xz\)

Khi đó:

\(2xy-2yz+2zx=x^2+y^2-z^2-x^2+y^2+z^2+x^2+z^2-y^2=x^2+y^2+z^2\) 

=> đpcm

2 tháng 11 2019

Thêm một cách nhé!

\(x=y+z\)

=> \(y+z-x=0\)

=> \(\left(y+z-x\right)^2=0\)

=> \(\left(y+z\right)^2-2x\left(y+z\right)+x^2=0\)

=> \(x^2+y^2+z^2-2xy-2xz+2yz=0\)

=> \(2\left(xy-yz+xz\right)=x^2+y^2+z^2\)

NV
6 tháng 4 2019

\(P=\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+xz+yz\right)}+\frac{2007}{xy+xz+yz}\)

\(P\ge\frac{9}{x^2+y^2+z^2+2\left(xy+xz+yz\right)}+\frac{2007}{xy+xz+yz}\)

\(P\ge\frac{9}{\left(x+y+z\right)^2}+\frac{2007}{\frac{\left(x+y+z\right)^2}{3}}=670\)

Dấu "=" xảy ra khi \(x=y=z=1\)

AH
Akai Haruma
Giáo viên
31 tháng 5 2018

Bài 1:
Vì $x+y+z=1$ nên:

\(Q=\frac{x}{x+\sqrt{x(x+y+z)+yz}}+\frac{y}{y+\sqrt{y(x+y+z)+xz}}+\frac{z}{z+\sqrt{z(x+y+z)+xy}}\)

\(Q=\frac{x}{x+\sqrt{(x+y)(x+z)}}+\frac{y}{y+\sqrt{(y+z)(y+x)}}+\frac{z}{z+\sqrt{(z+x)(z+y)}}\)

Áp dụng BĐT Bunhiacopxky:

\(\sqrt{(x+y)(x+z)}=\sqrt{(x+y)(z+x)}\geq \sqrt{(\sqrt{xz}+\sqrt{xy})^2}=\sqrt{xz}+\sqrt{xy}\)

\(\Rightarrow \frac{x}{x+\sqrt{(x+y)(x+z)}}\leq \frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế suy ra:

\(Q\leq \frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+ \frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+ \frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

Vậy $Q$ max bằng $1$

Dấu bằng xảy ra khi $x=y=z=\frac{1}{3}$

AH
Akai Haruma
Giáo viên
31 tháng 5 2018

Bài 2:
Vì $x+y+z=1$ nên:

\(\text{VT}=\frac{1-x^2}{x(x+y+z)+yz}+\frac{1-y^2}{y(x+y+z)+xz}+\frac{1-z^2}{z(x+y+z)+xy}\)

\(\text{VT}=\frac{(x+y+z)^2-x^2}{(x+y)(x+z)}+\frac{(x+y+z)^2-y^2}{(y+z)(y+x)}+\frac{(x+y+z)^2-z^2}{(z+x)(z+y)}\)

\(\text{VT}=\frac{(y+z)[(x+y)+(x+z)]}{(x+y)(x+z)}+\frac{(x+z)[(y+z)+(y+x)]}{(y+z)(y+x)}+\frac{(x+y)[(z+x)+(z+y)]}{(z+x)(z+y)}\)

Áp dụng BĐT AM-GM:
\(\text{VT}\geq \frac{2(y+z)\sqrt{(x+y)(x+z)}}{(x+y)(x+z)}+\frac{2(x+z)\sqrt{(y+z)(y+x)}}{(y+z)(y+x)}+\frac{2(x+y)\sqrt{(z+x)(z+y)}}{(z+x)(z+y)}\)

\(\Leftrightarrow \text{VT}\geq 2\underbrace{\left(\frac{y+z}{\sqrt{(x+y)(x+z)}}+\frac{x+z}{\sqrt{(y+z)(y+x)}}+\frac{x+y}{\sqrt{(z+x)(z+y)}}\right)}_{M}\)

Tiếp tục AM-GM cho 3 số trong ngoặc lớn, suy ra \(M\geq 3\)

Do đó: \(\text{VT}\geq 2.3=6\) (đpcm)

Dấu bằng xảy ra khi $3x=3y=3z=1$

10 tháng 2 2018

\(M=4x\left(x+y+z\right)\left(x^2+xz+yx+yz\right)+\left(yz\right)^2\)

\(M=4\left(x^2+xy+zx\right)\left(x^2+yz+zx+xy\right)+\left(yz\right)^2\)

\(M=4\left(x^2+xy+zx\right)\left\{\left(x^2+yz+zx\right)+xy\right\}+\left(yz^2\right)\)

\(M=4\left(x^2+xy+zx\right)^2+4\left(x^2+yz+zx\right)\left(yz\right)+\left(yz\right)^2\) ( hằng đẳng thức )

\(M=\left\{2\left(x^2+xy+zx\right)\right\}^2+2.2\left(x^2+xy+zx\right)\left(yz\right)+\left(yz\right)^2\)

\(M=\left(2\left(x^2+xy+zx\right)+\left(yz\right)\right)^2\)

\(M=\left(2x^2+2xy+zx+yz\right)^2\)

10 tháng 2 2018

\(M=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)

\(=2x\left(x+y+z\right)2\left(x+y\right)\left(x+z\right)+y^2z^2\)

\(=\left(2x^2+2xy+2xz\right)\left(2x^2+2xy+2xz+2yz\right)+y^2z^2\)

Đặt \(2x^2+2xy+2xz+yz=a\)

\(M=\left(a-yz\right)\left(a+yz\right)+y^2z^2\)

\(=a^2-y^2z^2+y^2z^2\)

\(=a^2\)

Mà \(x;y;z\in N\Rightarrow a\in N\)

=> M là số chính phương

1 tháng 8 2018

TÔI CHƯA GIẢI ĐƯỢC