K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2017

\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)

\(P=1-\frac{1}{x+1}+1-\frac{1}{y+1}+1-\frac{1}{z+1}\)

\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Áp dụng bđt Cauchy-Schwraz dạng Engel ta có:

\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}\)

                                                                      \(\le3-\frac{3^2}{1+3}=3-\frac{9}{4}=\frac{3}{4}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

23 tháng 1 2020

Ta có: \(P=1-\frac{1}{x+1}+1-\frac{1}{y+1}+\frac{1}{z-1}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Áp dụng BĐT Bunhiacôpski ta có:

\(\left(1+x+1+y+1+z\right)\left(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\right)\ge\left(1+1+1\right)^2=3^2=9\)

\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{3+x+y+z}=\frac{9}{4}\)

\(\Rightarrow A\le3-\frac{9}{4}=\frac{12}{4}-\frac{9}{4}=\frac{3}{4}\)

\(\Rightarrow Max_A=\frac{3}{4}\Leftrightarrow x=y=z=\frac{1}{3}\)

23 tháng 1 2020

\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)

Thay \(x+y+z=1\)vào biểu thức 

\(\Rightarrow P=\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\)

Áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\forall a,b>0\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2x+y+z}=\frac{x}{x+y+x+z}\le\frac{x}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\\\frac{y}{x+2y+z}=\frac{y}{x+y+y+z}\le\frac{y}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\\\frac{z}{x+y+2z}=\frac{z}{x+z+y+z}\le\frac{z}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\end{cases}}\)

\(\Rightarrow VT\le\frac{x}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{y}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\)\(+\frac{z}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\)

\(\Rightarrow VT\le\frac{x}{4\left(x+y\right)}+\frac{x}{4\left(x+z\right)}+\frac{y}{4\left(x+y\right)}+\frac{y}{4\left(y+z\right)}+\frac{z}{4\left(x+z\right)}\)\(+\frac{z}{4\left(y+z\right)}\)

\(\Rightarrow VT\le\frac{x}{4\left(x+y\right)}+\frac{y}{4\left(x+y\right)}+\frac{x}{4\left(x+z\right)}+\frac{z}{4\left(x+z\right)}+\frac{y}{4\left(y+z\right)}\)\(+\frac{z}{4\left(y+z\right)}\)

\(\Rightarrow VT\le\frac{x+y}{4\left(x+y\right)}+\frac{x+z}{4\left(x+z\right)}+\frac{y+z}{4\left(y+z\right)}\)

\(\Rightarrow VT\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}\)

\(\Rightarrow P\le\frac{3}{4}\)

Vậy \(P_{max}=\frac{3}{4}\)

Dấu " = " xảy ra khi \(x=y=z=\frac{1}{3}\)

Chúc bạn học tốt !!!

NV
27 tháng 8 2021

\(P=\sqrt{\left(x-3\right)^2+4^2}+\sqrt{\left(y-3\right)^2+4^2}+\sqrt{\left(z-3\right)^2+4^2}\)

\(P\ge\sqrt{\left(x-3+y-3+z-3\right)^2+\left(4+4+4\right)^2}=6\sqrt{5}\)

\(P_{min}=6\sqrt{5}\) khi \(x=y=z=1\)

Mặt khác với mọi \(x\in\left[0;3\right]\) ta có:

\(\sqrt{x^2-6x+25}\le\dfrac{15-x}{3}\)

Thật vậy, BĐT tương đương: \(9\left(x^2-6x+25\right)\le\left(15-x\right)^2\)

\(\Leftrightarrow8x\left(3-x\right)\ge0\) luôn đúng

Tương tự: ...

\(\Rightarrow P\le\dfrac{45-\left(x+y+z\right)}{3}=14\)

\(P_{max}=14\) khi \(\left(x;y;z\right)=\left(0;0;3\right)\) và hoán vị

20 tháng 9 2020

\(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\Rightarrow ab+bc+ca=1\)

\(\Rightarrow P\ge\frac{2a}{\sqrt{1+a^2}}+\frac{2b}{\sqrt{1+b^2}}+\frac{2c}{\sqrt{1+c^2}}\)

Áp dụng BĐT AM-GM: \(P=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

\(\le a\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+b\left(\frac{1}{4\left(a+b\right)}+\frac{1}{a-b}\right)-c\left(\frac{1}{4\left(b+c\right)}+\frac{1}{a-c}\right)=\frac{9}{4}\)

Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(\frac{\sqrt{15}}{7};\sqrt{15};\sqrt{15}\right)\)

20 tháng 10 2019

nhầm câu ba chứ không phải câu 4; câu 3 là d

3 tháng 2 2019

AP DUNG BDT CAUCHY-SCHWAR :  \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)(DAU "=" XAY RA KHI \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\))

3 tháng 2 2019

...Cauchy-Schwarz: 

\(Q\ge\frac{\left(1+2+3\right)^2}{x+y+z}=\frac{36}{1}=36\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y+z=1\\\frac{1}{x}=\frac{2}{y}=\frac{3}{z}\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=y\\3y=2z\\z=3x\end{cases}}\)

Giải tiếp t cái dấu = :v

AH
Akai Haruma
Giáo viên
6 tháng 3 2017

Lời giải:

Do \(x+y+z=1\) nên biến đổi như sau:

\(P=\frac{x}{(x+y)+(x+z)}+\frac{y}{(y+z)+(y+x)}+\frac{z}{(z+x)+(z+y)}\)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{(x+y)+(x+z)}\leq \frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\Rightarrow \frac{x}{(x+y)+(x+z)}\leq \frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

Thực hiện tương tự với các phân thức còn lại:

\(\Rightarrow P\leq \frac{1}{4}\left(\frac{x+y}{x+y}+\frac{y+z}{y+z}+\frac{z+x}{x+z}\right)=\frac{3}{4}\)

Vậy \(P_{\max}=\frac{3}{4}\Leftrightarrow x=y=z=\frac{1}{3}\)

6 tháng 3 2017

\(P=\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)

Thay \(x+y+z=1\) vào biểu thức

\(\Rightarrow P=\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\)

Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2x+y+z}=\dfrac{x}{x+y+x+z}\le\dfrac{x}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\\\dfrac{y}{x+2y+z}=\dfrac{y}{x+y+y+z}\le\dfrac{y}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}\right)\\\dfrac{z}{x+y+2z}=\dfrac{z}{x+z+y+z}\le\dfrac{z}{4}\left(\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{x}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)+\dfrac{y}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}\right)+\dfrac{z}{4}\left(\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)\)

\(\Rightarrow VT\le\dfrac{x}{4\left(x+y\right)}+\dfrac{x}{4\left(x+z\right)}+\dfrac{y}{4\left(x+y\right)}+\dfrac{y}{4\left(y+z\right)}+\dfrac{z}{4\left(x+z\right)}+\dfrac{z}{4\left(y+z\right)}\)

\(\Rightarrow VT\le\dfrac{x}{4\left(x+y\right)}+\dfrac{y}{4\left(x+y\right)}+\dfrac{x}{4\left(x+z\right)}+\dfrac{z}{4\left(x+z\right)}+\dfrac{y}{4\left(y+z\right)}+\dfrac{z}{4\left(y+z\right)}\)

\(\Rightarrow VT\le\dfrac{x+y}{4\left(x+y\right)}+\dfrac{x+z}{4\left(x+z\right)}+\dfrac{y+z}{4\left(y+z\right)}\)

\(\Rightarrow VT\le\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)

\(\Rightarrow P\le\dfrac{3}{4}\)

Vậy \(P_{max}=\dfrac{3}{4}\)

Dấu '' = '' xảy ra khi \(x=y=z\)

15 tháng 8 2020

\(Q=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\le3-\frac{16}{x+y+z+6}=\frac{1}{3}\)

dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\frac{1}{2};\frac{1}{2};-1\right)\)

24 tháng 10 2020

Ta có: \(\frac{1}{\left(3x+1\right)\left(y+z\right)+x}=\frac{1}{3x\left(y+z\right)+x+y+z}\le\frac{1}{3x\left(y+z\right)+3\sqrt[3]{xyz}}\)

\(=\frac{1}{3x\left(y+z\right)+3\sqrt[3]{1}}=\frac{1}{3x\left(y+z\right)+3}=\frac{1}{3\left(xy+zx+1\right)}=\frac{1}{3}\cdot\frac{1}{\frac{1}{y}+\frac{1}{z}+1}\)

Tương tự ta chứng minh được:

\(\frac{1}{\left(3y+1\right)\left(z+x\right)+y}\le\frac{1}{3}\cdot\frac{1}{\frac{1}{z}+\frac{1}{x}+1}\) ; \(\frac{1}{\left(3z+1\right)\left(x+y\right)+z}\le\frac{1}{3}\cdot\frac{1}{\frac{1}{x}+\frac{1}{y}+1}\)

Cộng vế 3 BĐT trên lại:

\(A\le\frac{1}{3}\cdot\left(\frac{1}{\frac{1}{x}+\frac{1}{y}+1}+\frac{1}{\frac{1}{y}+\frac{1}{z}+1}+\frac{1}{\frac{1}{z}+\frac{1}{x}+1}\right)\)

\(\Leftrightarrow3A\le\frac{1}{\left(\frac{1}{\sqrt[3]{x}}\right)^3+\left(\frac{1}{\sqrt[3]{y}}\right)^3+1}+\frac{1}{\left(\frac{1}{\sqrt[3]{y}}\right)^3+\left(\frac{1}{\sqrt[3]{z}}\right)^3+1}+\frac{1}{\left(\frac{1}{\sqrt[3]{z}}\right)^3+\left(\frac{1}{\sqrt[3]{x}}\right)^3+1}\)

Đặt \(\left(\frac{1}{\sqrt[3]{x}};\frac{1}{\sqrt[3]{y}};\frac{1}{\sqrt[3]{z}}\right)=\left(a;b;c\right)\) khi đó:

\(3A\le\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\)

\(=\frac{1}{\left(a+b\right)\left(a^2-ab+b^2\right)+1}+\frac{1}{\left(b+c\right)\left(b^2-bc+c^2\right)+1}+\frac{1}{\left(c+a\right)\left(c^2-ca+a^2\right)+1}\)

\(\le\frac{1}{\left(a+b\right)\left(2ab-ab\right)+1}+\frac{1}{\left(b+c\right)\left(2bc-bc\right)+1}+\frac{1}{\left(c+a\right)\left(2ca-ca\right)+1}\)

\(=\frac{1}{ab\left(a+b\right)+1}+\frac{1}{bc\left(b+c\right)+1}+\frac{1}{ca\left(c+a\right)+1}\)

\(=\frac{abc}{ab\left(a+b\right)+abc}+\frac{abc}{bc\left(b+c\right)+abc}+\frac{abc}{ca\left(c+a\right)+abc}\)

\(=\frac{c}{a+b+c}+\frac{a}{b+c+a}+\frac{b}{c+a+b}\)

\(=\frac{a+b+c}{a+b+c}=1\)

Dấu "=" xảy ra khi: \(a=b=c\Leftrightarrow x=y=z=1\)

Vậy Max(A) = 1 khi x = y = z = 1

25 tháng 10 2020

Câu hỏi của Pham Van Hung - Toán lớp 9 - Học toán với OnlineMath