\(8^x+8^y+8^z\ge4^x+4^y+4^z\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2017

vì 4 = 22  

và 8 =2

nên 4^x=8^y khi 3X =2y

=> số mũ của 4 phải =3/2 số mũ của 8 thì 2 số đó mới = nhau

mà số mũ hai bên đã = nhau => 8^x+8^y+8^z>=4^x+4^y+4^z 

11 tháng 12 2019

Đặt \(\left(a;b;c\right)=\left(2^x;2^y;2^z\right)\)\(\left(a,b,c>0\right)\)\(\Rightarrow\)\(a+b+c\ge3\sqrt[3]{2^{x+y+z}}=3\sqrt[3]{2^6}=12\)

bđt đề bài \(\Leftrightarrow\)\(a^3+b^3+c^3\ge4\left(a^2+b^2+c^2\right)\)

Dễ dàng chứng minh bđt trên với bđt phụ \(a^3-4a^2\ge16a-64\)\(\Leftrightarrow\)\(\left(a-4\right)^2\left(a+4\right)\ge0\) luon dung 

\(\Rightarrow\)\(a^3+b^3+c^3\ge4\left(a^2+b^2+c^2\right)+16\left(a+b+c\right)-192\ge4\left(a^2+b^2+c^2\right)\)

Dấu "=" xảy ra khi \(x=y=z=2\)

20 tháng 1 2019

Đặt : \(a=2^x;b=2^y;c=2^z\)

Khi đó :  \(a,b,c>0;abc=2^{x+y+z}=64\)

Ta cần c/m : \(a^3+b^3+c^3\ge4\left(a^2+b^2+c^2\right)\)

\(\Rightarrow a^3+32-6a^2=\left(a-4\right)^2\left(a+2\right)\)

Theo đó, ta cần sử dụng giả thiết : \(a>0\), suy ra : \(a^3+32\ge6a^2\)

Thiết lập các bđt tương tự cho b và c và cộng theo vế các bđt tìm được, ta có :

\(a^3+b^3+c^3+96\ge6\left(a^2+b^2+c^2\right)\)

Ta cần c/m thêm : \(6\left(a^2+b^2+c^2\right)\ge4\left(a^2+b^2+c^2\right)+96\)

hay : \(2\left(a^2+b^2+c^2\right)\ge2.3\sqrt[3]{a^2b^2c^2}=6\sqrt[3]{4096}=96\)

\(\Rightarrowđpcm\)

21 tháng 1 2019

mik làm cách khác,mấy bạn cho điểm nhá!

Sai đề:x+y+z=6

Đặt\(a=2^x,b=2^y,c=2^z\)

\(\Rightarrow abc=2^{x+y+z}=64\)

Áp dụng bất đẳng thức AM-GM,ta được:

\(3\sqrt[3]{abc}\le a+b+c\)

Ta có:\(3\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

Hay \(2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)

Thật vậy:

Áp dụng bất đẳng thức AM-GM một lần nữa,ta được:

\(a^3+a^3+b^3\ge3a^2b\)

\(a^3+a^3+c^3\ge3a^2c\)

\(a^3+b^3+b^3\ge3b^2a\)

\(a^3+c^3+c^3\ge3c^2a\)

\(b^3+b^3+c^3\ge3b^2c\)

\(b^3+c^3+c^3\ge3c^2b\)

Cộng vế theo vế của các bất đẳng thức,ta được:

\(2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)

Dấu "="xẩy ra khi và chỉ khi:\(a=b=c\)

NV
20 tháng 6 2019

Đề bài sai, cho \(x=y=z=\frac{1}{3}\) thì \(VT=6\) ; \(VP>19\)

18 tháng 6 2019

Đề bài chuẩn đấy bạn :v

13 tháng 8 2018

Áp dụng BĐT cauchy schawrz dạng engel ta có:

\(\frac{\left(y+z\right)^2}{x}+\frac{\left(x+z\right)^2}{y}+\frac{\left(x+y\right)^2}{z}\ge\frac{\left(y+z+x+z+x+y\right)^2}{x+y+z}=\frac{4\left(x+y+z\right)^2}{x+y+z}=4\left(x+y+z\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)

3 tháng 9 2018

Áp dụng BĐT cauchy schawrz dạng engel, ta có:

\(\frac{\left(y+z\right)^2}{x}+\frac{\left(x+z\right)^2}{y}+\frac{\left(x+y\right)^2}{z}\ge\frac{\left(y+z+x+z+x+y\right)^2}{x+y+z}=\frac{4\left(x+y+z\right)^2}{x+y+z}=4\left(x+y+z\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)

8 tháng 10 2018

Sửa đề z^4(z-y) thành z^4(x-y)

Đặt \(A=x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)

\(=x^4\left(y-x+x-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)

\(=-x^4\left(x-y\right)+x^4\left(x-z\right)-y^4\left(x-z\right)+z^4\left(x-y\right)\)

\(=\left(x-y\right)\left(z^4-x^4\right)+\left(x-z\right)\left(x^4-y^4\right)\)

\(=\left(x-y\right)\left(z^2+x^2\right)\left(z^2-x^2\right)+\left(x-z\right)\left(x^2+y^2\right)\left(x^2-y^2\right)\)

\(=\left(x-y\right)\left(z^2+x^2\right)\left(x+z\right)\left(z-x\right)+\left(x-z\right)\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)\)

\(=\left(x-y\right)\left(z-x\right)\left[\left(z^2+x^2\right)\left(x+z\right)-\left(x^2+y^2\right)\left(x+y\right)\right]\)

\(=\left(x-y\right)\left(z-x\right)\left(xz^2+z^3+x^3+x^2z-x^3-x^2y-xy^2-y^3\right)\)

\(=\left(x-y\right)\left(z-x\right)\left[x^2\left(z-y\right)+x\left(z^2-y^2\right)+\left(z^3-y^3\right)\right]\)

\(=\left(x-y\right)\left(z-x\right)\left(z-y\right)\left[x^2+x\left(z+y\right)+\left(z^2+yz+y^2\right)\right]\)

\(=\left(x-y\right)\left(x-z\right)\left(y-z\right)\left(x^2+xz+xy+z^2+yz+y^2\right)\)

\(=\frac{1}{2}\left(x-y\right)\left(x-z\right)\left(y-z\right)\left(2x^2+2y^2+2z^2+2xy+2yz+2xz\right)\)

\(=\frac{1}{2}\left(x-y\right)\left(x-z\right)\left(y-z\right)\left[\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2\right]\)

Vì \(x>y>z\Rightarrow\hept{\begin{cases}x-y>0\\x-z>0\\y-z>0\end{cases}}\) và \(\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2\ge0\)

=>....

1 tháng 7 2015

Áp dụng bất đẳng thức Cauchy - Schwarz : \(\frac{a^2}{b}+\frac{c^2}{d}\ge\frac{\left(a+c\right)^2}{b+d}\) 

\(\frac{1}{x^4}+\frac{1}{y^4}=\frac{x^2}{x^6}+\frac{1^2}{y^4}\ge\frac{\left(x+1\right)^2}{x^6+y^4}\ge\frac{4x}{x^6+y^4}\)(\(\left(a+b\right)^2\ge4a\))

Tương tự: \(\frac{1}{y^4}+\frac{1}{z^4}\ge\frac{4y}{y^6+z^4};\frac{1}{z^4}+\frac{1}{x^4}\ge\frac{4z}{z^6+x^4}\)

\(\Rightarrow2.\left(\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\right)\ge4\left(\frac{x}{x^6+y^4}+\frac{y}{y^6+z^4}+\frac{z}{z^6+x^4}\right)\)

\(\Rightarrow\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\ge\frac{2x}{x^6+y^4}+\frac{2y}{y^6+z^4}+\frac{2z}{z^6+x^4}\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)

 

22 tháng 6 2018

với x,y,z >0 áp dụng bđt cosi ta có:

\(x^6+y^4>=2\sqrt{x^6y^4}=2x^3y^2\Rightarrow\frac{2x}{x^6+y^4}< =\frac{2x}{2x^3y^2}=\frac{1}{x^2y^2}\)

\(y^6+z^4>=2\sqrt{y^6z^4}=2y^3z^2\Rightarrow\frac{2y}{y^6+z^4}< =\frac{2y}{2y^3z^2}=\frac{1}{y^2z^2}\)

\(z^6+x^4>=2\sqrt{z^6x^4}=2z^3x^2\Rightarrow\frac{2z}{z^6+x^4}< =\frac{2z}{2z^3x^2}=\frac{1}{z^2x^2}\)

\(\Rightarrow\frac{2x}{x^6+y^4}+\frac{2y}{y^6+z^4}+\frac{2z}{z^6+x^4}< =\frac{1}{x^2y^2}+\frac{1}{y^2z^2}+\frac{1}{z^2x^2}\left(1\right)\)

với x,y,z>0 áp dụng bđt cosi ta có:

\(\frac{1}{x^4}+\frac{1}{y^4}>=2\sqrt{\frac{1}{x^4}\cdot\frac{1}{y^4}}=\frac{2}{x^2y^2}\)

\(\frac{1}{y^4}+\frac{1}{z^4}>=2\sqrt{\frac{1}{y^4}\cdot\frac{1}{z^4}}=\frac{2}{y^2z^2}\)

\(\frac{1}{x^4}+\frac{1}{z^4}>=2\sqrt{\frac{1}{x^4}\cdot\frac{1}{z^4}}=\frac{2}{x^2z^2}\)

\(\Rightarrow\frac{2}{x^4}+\frac{2}{y^4}+\frac{2}{z^4}>=\frac{2}{x^2y^2}+\frac{2}{y^2z^2}+\frac{2}{x^2z^2}\Rightarrow\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}>=\frac{1}{x^2y^2}+\frac{1}{y^2z^2}+\frac{1}{x^2z^2}\)

\(\Rightarrow\frac{1}{x^2y^2}+\frac{1}{y^2z^2}+\frac{1}{x^2z^2}< =\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\left(2\right)\)

từ \(\left(1\right)\left(2\right)\Rightarrow\frac{2x}{x^6+y^4}+\frac{2x}{y^6+z^4}+\frac{2x}{z^6+x^4}< =\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\)(đpcm)

dấu = xảy ra khi x=y=z=1

AH
Akai Haruma
Giáo viên
31 tháng 5 2018

Bài 1:
Vì $x+y+z=1$ nên:

\(Q=\frac{x}{x+\sqrt{x(x+y+z)+yz}}+\frac{y}{y+\sqrt{y(x+y+z)+xz}}+\frac{z}{z+\sqrt{z(x+y+z)+xy}}\)

\(Q=\frac{x}{x+\sqrt{(x+y)(x+z)}}+\frac{y}{y+\sqrt{(y+z)(y+x)}}+\frac{z}{z+\sqrt{(z+x)(z+y)}}\)

Áp dụng BĐT Bunhiacopxky:

\(\sqrt{(x+y)(x+z)}=\sqrt{(x+y)(z+x)}\geq \sqrt{(\sqrt{xz}+\sqrt{xy})^2}=\sqrt{xz}+\sqrt{xy}\)

\(\Rightarrow \frac{x}{x+\sqrt{(x+y)(x+z)}}\leq \frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế suy ra:

\(Q\leq \frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+ \frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+ \frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

Vậy $Q$ max bằng $1$

Dấu bằng xảy ra khi $x=y=z=\frac{1}{3}$

AH
Akai Haruma
Giáo viên
31 tháng 5 2018

Bài 2:
Vì $x+y+z=1$ nên:

\(\text{VT}=\frac{1-x^2}{x(x+y+z)+yz}+\frac{1-y^2}{y(x+y+z)+xz}+\frac{1-z^2}{z(x+y+z)+xy}\)

\(\text{VT}=\frac{(x+y+z)^2-x^2}{(x+y)(x+z)}+\frac{(x+y+z)^2-y^2}{(y+z)(y+x)}+\frac{(x+y+z)^2-z^2}{(z+x)(z+y)}\)

\(\text{VT}=\frac{(y+z)[(x+y)+(x+z)]}{(x+y)(x+z)}+\frac{(x+z)[(y+z)+(y+x)]}{(y+z)(y+x)}+\frac{(x+y)[(z+x)+(z+y)]}{(z+x)(z+y)}\)

Áp dụng BĐT AM-GM:
\(\text{VT}\geq \frac{2(y+z)\sqrt{(x+y)(x+z)}}{(x+y)(x+z)}+\frac{2(x+z)\sqrt{(y+z)(y+x)}}{(y+z)(y+x)}+\frac{2(x+y)\sqrt{(z+x)(z+y)}}{(z+x)(z+y)}\)

\(\Leftrightarrow \text{VT}\geq 2\underbrace{\left(\frac{y+z}{\sqrt{(x+y)(x+z)}}+\frac{x+z}{\sqrt{(y+z)(y+x)}}+\frac{x+y}{\sqrt{(z+x)(z+y)}}\right)}_{M}\)

Tiếp tục AM-GM cho 3 số trong ngoặc lớn, suy ra \(M\geq 3\)

Do đó: \(\text{VT}\geq 2.3=6\) (đpcm)

Dấu bằng xảy ra khi $3x=3y=3z=1$

17 tháng 11 2017

Có : (a-b)^2>=0

<=> a^2+b^2-2ab >=0

<=>a^2+b^2 >= 2ab

<=>a^2+b^2+2ab >= 4ab

<=> (a+b)^2 >= 4ab

Với a,b >0 thì chia cả 2 vế cho (a+b).ab thì :

a+b/ab >= 4/a+b

<=>4/a+b <= 1/a+1/b

<=> 1/a+b <= 1/4.(1/a+1/b)         ( với mọi a,b > 0 )

Áp dụng bđt trên cho x;y;z > 0 thì : x/2x+y+z = x. 1/(x+y)+(z+x) <= x/4 .( 1/x+y+1/x+z) = x/4.(x+y) + x/4.(x+z)

Tương tự : y/x+2y+z <= y/4.(y+x) + y/4.(y+z)

z/x+y+2z <= z/4.(z+x) + z/4.(z+y)

=> VT <= [ x/4.(x+y) + y/4.(y+x) ] + [ y/4.(y+z) + z/4.(z+y) ] + [ z/4.(z+x) + x/4.(x+z) ] = 1/4 + 1/4 + 1/4 = 3/4

=> ĐPCM

Dấu "=" xảy ra <=> x=y=z > 0 

k mk nha

áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với mọi a,b >0 

Thì \(\frac{x}{x+y}+\frac{x}{x+z}\ge\frac{4x}{2x+y+z}\) 

Tương tự thì đpcm 

Cách này nhanh này thành đơ