Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Hoàng Thái Dương - Toán lớp 8 - Học toán với OnlineMath
Áp dụng BĐT AM-GM ta có:
\(\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3\sqrt[3]{x^3y^3}}}{xy}=\frac{\sqrt{3xy}}{xy}=\frac{\sqrt{3}}{\sqrt{xy}}\)
Tương tự cho 2 BĐT còn lại ta có:
\(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3}}{\sqrt{yz}};\frac{\sqrt{1+z^3+x^3}}{xz}\ge\frac{\sqrt{3}}{\sqrt{xz}}\)
Cộng theo vế 3 BĐT trên ta có:
\(M\ge\sqrt{3}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)=\sqrt{3}\cdot\left(\frac{\sqrt{x}}{\sqrt{xyz}}+\frac{\sqrt{y}}{\sqrt{xyz}}+\frac{\sqrt{z}}{\sqrt{xyz}}\right)\)
\(=\sqrt{3}\cdot\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{xyz}}\ge\sqrt{3}\cdot\frac{3\sqrt[3]{\sqrt{xyz}}}{1}=3\sqrt{3}\)
Khi \(x=y=z=1\)
\(A=\left(x+y+z+\frac{1}{4x}+\frac{1}{4y}+\frac{1}{4z}\right)+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\ge2\sqrt{x.\frac{1}{4x}}+2\sqrt{y.\frac{1}{4y}}+2\sqrt{z.\frac{1}{4z}}+\frac{3}{4}\left(\frac{9}{x+y+z}\right)\)
\(\ge1+1+1+\frac{3}{4}.\frac{9}{\frac{3}{2}}=\frac{15}{2}\)
Dấu "=" xảy ra <=> x = y = z = 1/2
Vậy min A = 15/2 tại x = y = z = 1/2
Lời giải của em ạ :D
\(A=x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\ge x+y+z+\frac{9}{x+y+z}\)
Đặt \(t=x+y+z\le\frac{3}{2}\)
Khi đó \(A=t+\frac{9}{t}=\left(t+\frac{9}{4t}\right)+\frac{27}{4t}\ge3+\frac{27}{4\cdot\frac{3}{2}}=\frac{15}{2}\)
Đẳng thức xảy ra tại x=y=z=1/2
Ta có: \(P=\frac{x+y}{xyz}=\frac{1}{yz}+\frac{1}{zx}\ge\frac{4}{yz+zx}\) (BĐT Cauchy-Schwarz)
\(=\frac{4}{\left(x+y\right)z}=\frac{4}{\left(1-z\right)z}=\frac{4}{-z^2+z}=\frac{4}{\left(-z^2+z-\frac{1}{4}\right)+\frac{1}{4}}\)
\(=\frac{4}{-\left(z-\frac{1}{2}\right)^2+\frac{1}{4}}\ge\frac{4}{\frac{1}{4}}=16\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x=y\\\left(z-\frac{1}{2}\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{4}\\z=\frac{1}{2}\end{cases}}\)
Vậy Min(P) = 16 khi \(\hept{\begin{cases}x=y=\frac{1}{4}\\z=\frac{1}{2}\end{cases}}\)
\(A=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\ge\frac{2}{x+1}+\frac{2}{y+1}+\frac{2}{z+1}\ge\frac{18}{x+y+z+3}=3\)
Câu hỏi của Hoàng Thái Dương - Toán lớp 8 - Học toán với OnlineMath