Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3, \(P=a+b+\frac{1}{2a}+\frac{2}{b}\)
=\(\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{b}{2}+\frac{2}{b}\right)+\frac{a+b}{2}\)
AD bđt cosi vs hai số dương có:
\(\frac{1}{2a}+\frac{a}{2}\ge2\sqrt{\frac{1}{2a}.\frac{a}{2}}=2\sqrt{\frac{1}{4}}=1\)
\(\frac{b}{2}+\frac{2}{b}\ge2\sqrt{\frac{b}{2}.\frac{2}{b}}=2\)
Có \(\frac{a+b}{2}\ge\frac{3}{2}\) (vì a+b \(\ge3\))
=> \(P=\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{b}{2}+\frac{2}{b}\right)+\frac{a+b}{2}\ge1+2+\frac{3}{2}\)
<=> P \(\ge4.5\)
Dấu "=" xảy ra <=>\(\left\{{}\begin{matrix}\frac{1}{2a}=\frac{a}{2}\\\frac{b}{2}=\frac{2}{b}\\a+b=3\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}a^2=1\\b^2=4\\a+b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=1\\b=2\\a+b=3\end{matrix}\right.\)
=> a=2,b=3
Vậy minP=4.5 <=>a=1,b=2
Áp dụng Bunhia.
\(\left(x+y+z\right)^2\le\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)=3.3=9\)
=> \(0< x+y+z\le3\)
Có: \(P=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}-\frac{1}{x+y+z}\)
\(=\frac{x^2-2x+1}{x}+\frac{y^2-2y+1}{y}+\frac{z^2-2z+1}{z}-\frac{1}{x+y+z}+6\)
\(=\frac{\left(x-1\right)^2}{x}+\frac{\left(y-1\right)^2}{y}+\frac{\left(z-1\right)^2}{z}-\frac{1}{x+y+z}+6\)
\(\ge\frac{\left(x+y+z-3\right)^2}{x+y+z}-\frac{1}{x+y+z}+6=\frac{\left(x+y+z-3\right)^2-1}{x+y+z}+6\)
\(\ge\frac{0-1}{3}+6=\frac{17}{3}\)
"=" xảy ra <=> \(x+y+z=3;x=y=z\Leftrightarrow x=y=z=1\)
Vậy min P = 17/3 <=> x = y = z =1.
\(P=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}-\frac{1}{x+y+z}\)
\(=x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}\)
\(\ge x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=x+y+z+\frac{8x}{9}+\frac{8y}{9}+\frac{8z}{9}\)
Có BĐT phụ \(a+\frac{8}{9a}\ge\frac{a^2+33}{18}\)
\(\Leftrightarrow\frac{9a^2+8}{9a}\ge\frac{a^2+33}{18}\)
\(\Leftrightarrow162a^2+144-9a^3-297a\ge0\)
\(\Leftrightarrow-a^3+18a^2-33a+16\ge0\)
\(\Leftrightarrow\left(a-1\right)^2\left(16-a\right)\ge0\left(OK\right)\)
\(\Rightarrow P\ge\frac{x^2+y^2+z^2+99}{18}=\frac{17}{3}\)
Dấu "=" xảy ra tại x=y=z=1
Vì x,y,z>0, áp dụng bất đẳng thức cô si ta có:
\(\frac{1}{x^2+1}+\frac{x^2+1}{4}\ge2\sqrt{\frac{1}{x^2+1}\cdot\frac{x^2+1}{4}}=2\cdot\frac{1}{2}=1\)
CMTT
\(\frac{1}{y^2+1}+\frac{y^2+1}{4}\ge1\)
\(\frac{1}{z^2+1}+\frac{z^2+1}{4}\ge1\)
Cộng vế vs vế ta được:
\(A+\frac{x^2+y^2+z^2}{4}+\frac{3}{4}\ge3\)
\(A+\frac{x^2+y^2+z^2}{4}\ge\frac{9}{4}\)
Mặt khác
\(\left(x+y+z\right)^2\ge3\left(x^2+y^2+z^2\right)\)
\(3^2\ge3\left(-\right)\)
\(\frac{3}{4}\ge\frac{x^2+y^2+z^2}{4}\)
\(\Leftrightarrow A+\frac{3}{4}+\frac{x^2+y^2+z^2}{4}\ge\frac{9}{4}+\frac{x^2+y^2+z^2}{4}\)
\(A\ge\frac{3}{2}\)
\("="\Leftrightarrow x=y=z=1\)
\(A\ge\frac{1}{3}\left(x+\frac{1}{x}+y+\frac{1}{y}+z+\frac{1}{z}\right)^2\ge\frac{1}{3}\left(x+y+z+\frac{9}{x+y+z}\right)^2=\frac{100}{3}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
\(\frac{x}{1+y^2}=x-\frac{xy^2}{1+y^2}\ge x-\frac{xy^2}{2y}=x-\frac{1}{2}xy\)
Tương tự và cộng lại:
\(A\ge x+y+z-\frac{1}{2}\left(xy+yz+zx\right)\ge x+y+z-\frac{1}{6}\left(x+y+z\right)^2=\frac{3}{2}\)
\("="\Leftrightarrow x=y=z=1\)