Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT AM-GM ta có:
$\frac{x^3}{(y+2z)^2}+\frac{y+2z}{27}+\frac{y+2z}{27}\geq 3\sqrt[3]{\frac{x^3}{(y+2z)^2}.\frac{y+2z}{27}.\frac{y+2z}{27}}=\frac{x}{3}$
$\frac{y^3}{(z+2x)^2}+\frac{z+2x}{27}+\frac{z+2x}{27}\geq \frac{y}{3}$
$\frac{z^3}{(x+2y)^2}+\frac{x+2y}{27}+\frac{x+2y}{27}\geq \frac{z}{3}$
Cộng theo vế các BĐT trên và thu gọn thì:
$\sum \frac{x^3}{(y+2z)^2}+\frac{x+y+z}{9}\geq \frac{x+y+z}{3}$
$\Rightarrow \sum \frac{x^3}{(y+2z)^2}\geq \frac{2}{9}(x+y+z)$ (đpcm)
Dấu "=" xảy ra khi $x=y=z$
Áp dụng BĐT BSC và BĐT Cosi:
\(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\ge17\left(x+y+z\right)+\frac{2.\left(1+1+1\right)^2}{x+y+z}\)
\(=17\left(x+y+z\right)=\frac{18}{x+y+z}\)
\(=17\left(x+y+z\right)=\frac{17}{x+y+z}+\frac{1}{x+y+z}\)
\(\ge2\sqrt{17\left(x+y+z\right).\frac{17}{x+y+z}}+\frac{1}{1}\)
\(=35\)
\(\Rightarrow17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)
Áp dụng bất đẳng thức AM-GM kết hợp giả thiết x + y + z ≤ 1 ta có :
\(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=17x+17y+17z+\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\)
\(=\left(18x+\frac{2}{x}\right)+\left(18y+\frac{2}{y}\right)+\left(18z+\frac{2}{z}\right)-\left(x+y+z\right)\)
\(\ge2\sqrt{18x\cdot\frac{2}{x}}+2\sqrt{18y\cdot\frac{2}{y}}+2\sqrt{18z\cdot\frac{2}{z}}-1=12\cdot3-1=35\)( đpcm )
Dấu "=" xảy ra <=> x=y=z=1/3
Áp dụng BĐT cauchy schawrz dạng engel ta có:
\(\frac{\left(y+z\right)^2}{x}+\frac{\left(x+z\right)^2}{y}+\frac{\left(x+y\right)^2}{z}\ge\frac{\left(y+z+x+z+x+y\right)^2}{x+y+z}=\frac{4\left(x+y+z\right)^2}{x+y+z}=4\left(x+y+z\right)\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
Áp dụng BĐT cauchy schawrz dạng engel, ta có:
\(\frac{\left(y+z\right)^2}{x}+\frac{\left(x+z\right)^2}{y}+\frac{\left(x+y\right)^2}{z}\ge\frac{\left(y+z+x+z+x+y\right)^2}{x+y+z}=\frac{4\left(x+y+z\right)^2}{x+y+z}=4\left(x+y+z\right)\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)