K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2017

Ta có:

P=x2+y2+z2+xy+yz+zx

\(\Rightarrow\) 2P= 2x2+2y2+2z2+2xy+2yz+2xz

= (x+y+z)2+x2+y2+z2

= 9+x2+y2+z2

Ta có x2+y2+z2\(\geq\) xy+yz+zx

\(\Leftrightarrow\) 3(x2+y2+z2)\(\geq\) x2+y2+z2+2xy+2yz+2zx

\(\Leftrightarrow\) 3(x2+y2+z2)\(\geq\) (x+y+z)2

\(\Leftrightarrow\) x2+y2+z2\(\geq\) \(\dfrac{\left(x+y+z\right)^2}{3}\) (1)

Từ đó suy ra: 9 + x2+y2+z2\(\geq\) 9+\(\dfrac{\left(x+y+z\right)^2}{3}\) = 9+\(\dfrac{9}{3}\)=9+3=12

\(\Rightarrow\) 2P\(\geq\)12

\(\Rightarrow\) P\(\geq\)6

Dấu = xảy ra khi x=y=z=1

Vậy MinP = 6 khi x=y=z=1

1 tháng 4 2017

Coi lại đề nhé!!!

7 tháng 10 2017

https://hoc24.vn/hoi-dap/question/54430.html

7 tháng 10 2017

 

\(A=\left(2n-1\right)^3-2n+1\)

\(A=8n^3-6n+6n-1-2n+1\)

\(A=8n^3-2n=2n\left(4n^2-1\right)\)

\(A=2n\left(2n+1\right)\left(2n-1\right)\)

\(A=\left(2n-1\right)2n\left(2n+1\right)⋮6\) ( 3 số tự nhiên liên tiếp)

6 tháng 10 2016

 xy(x+y)+yz(y+z)+xz(x+z)+2xyz 

= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

6 tháng 10 2016

sai đề r bạn ơi

18 tháng 6 2017

\(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\)

= \(\left[\left(x+y+z\right)-\left(x+y\right)\right]^2\)

= \(z^2\)

18 tháng 6 2017

Ta có:(x + y + z)2 - 2(x + y + z) (x + y) + (x + y)2

=[(x+y+z)-(x+y)]2=z2

a: \(9x^2-6x+3\)

\(=\left(9x^2-6x+1\right)+2\)

\(=\left(3x-1\right)^2+2\ge2\)

b: \(6x-x^2+1\)

\(=-\left(x^2-6x-1\right)\)

\(=-\left(x^2-6x+9-10\right)\)

\(=-\left(x-3\right)^2+10\le10\)

10 tháng 6 2017

nhớ bật google dịch là đc bạn ơi....:))))

20 tháng 8 2016

T ừ x2 + y2 + z2 = xy + yz + zx nhân 2 vế với 2 rồi chuyển vế ta có: 
2x2 + 2y2 + 2z2 - 2xy -2 yz -2zx = 0 
<=> (X^2 - 2xy + y^2 ) + ( x^ 2 -2zx + z^2) + (y^2 -2 yz+ z^2) =0 
<=> ( x -y)^2 + (x - z)^2 + ( y-z)^2= 0 
=> x-y=0; x-z=0; y-z= 0 
=>. x=y=z thay vào x^2009+ y^2009 +z^2009= 3^2010 
ta có 3x^2009 = 3^2010 = 3.3^ 2009 => x=3 
Vậy x=y=z =3

25 tháng 3 2017

bài này dùng bất đẳng thức để giải.

giải:

\(\dfrac{5x-2}{3}\ge x\Leftrightarrow\dfrac{5x-2}{3}\ge\dfrac{3x}{3}\\ \Rightarrow5x-2\ge3x\\ \Leftrightarrow5x-3x\ge2\Leftrightarrow2x\ge2\\ x\ge1\)

Vậy tập nghiệm của phương trình là \(\left\{x|x\ge1\right\}\)

25 tháng 3 2017

Ta có: \(\dfrac{5x-2}{3}\)không nhỏ hơn x nên \(\dfrac{5x-2}{3}\)\(\ge\)x

<=>\(\dfrac{5x-2}{3}\ge\dfrac{3x}{3}\)<=>5x-2\(\ge\)3x<=>5x-3x\(\ge\)2<=>2x\(\ge\)2<=>x\(\ge\)1

Vậy x\(\ge\)1 thì \(\dfrac{5x-2}{3}\)không nhỏ hơn x

17 tháng 9 2017

ta có : \(m=x^2-x+1=x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) với mọi \(x\)

\(\Rightarrow\) giá trị nhỏ nhất của \(m=x^2-x+1\)\(\dfrac{3}{4}\) khi \(\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)

vậy giá trị nhỏ nhất của \(m=x^2-x+1\)\(\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)

29 tháng 10 2017

\(A=3x^2-12x+10\\ A=3x^2-12x+12-2\\ A=\left(3x^2-12x+12\right)-2\\ A=3\left(x^2-4x+4\right)-2\\ A=3\left(x^2-2\cdot x\cdot2+2^2\right)-2\\ A=3\left(x-2\right)^2-2\\ Do\left(x-2\right)^2\ge0\forall x\\ \Rightarrow3\left(x-2\right)^2\ge0\forall x\\ \Rightarrow A=3\left(x-2\right)^2-2\ge-2\forall x\\ \text{Dấu “=” xảy ra khi : }\\ \left(x-2\right)^2=0\\ \Leftrightarrow x-2=0\\ \Leftrightarrow x=2\\ \text{ Vậy }A_{\left(Min\right)}=-2\text{ khi }x=2\)

29 tháng 10 2017

A=3x2 - 12x + 10

A= (3x2- 2.3x.2+22)-22+10

A= (3x-2)2+6 \(\ge\) +6

Vậy min A = 6 . Dấu = xảy ra khi 3x -2 = 0

3x= 2

x= \(\dfrac{2}{3}\)