Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-Schwarz dạng Engelta có:
\(VT=\frac{700}{2\left(xy+yz+xz\right)}+\frac{386}{x^2+y^2+z^2}\)\(=\frac{\sqrt{700}^2}{2\left(xy+yz+xz\right)}+\frac{\sqrt{386}^2}{x^2+y^2+z^2}\)
\(\ge\frac{\left(\sqrt{700}+\sqrt{386}\right)^2}{x^2+y^2+z^2+2\left(xy+yz+xz\right)}\)\(=\frac{\left(\sqrt{700}+\sqrt{386}\right)^2}{\left(x+y+z\right)^2}\)
\(=\left(\sqrt{700}+\sqrt{386}\right)^2>2015\left(x+y+z=1\right)\)
\(P=\frac{\sqrt{386}^2}{x^2+y^2+z^2}+\frac{\sqrt{700}^2}{2\left(xy+yz+zx\right)}\ge\frac{\left(\sqrt{386}+\sqrt{700}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{386}+\sqrt{700}\right)^2\)
Bây giờ chỉ cần chứng minh:
\(\left(\sqrt{386}+\sqrt{700}\right)^2>2015\)
Ta có \(\left(\sqrt{386}+\sqrt{700}\right)^2>\left(\sqrt{361}+\sqrt{676}\right)^2=2025>2015\) (đpcm)
áp dụng BĐT xy+yz+zx<= x2+y2+z2 chia 350 đảo dấu thì cùng chiều
đặt 1/(x2+y2+z2) ra làm nhân tử chung rồi 350+386=736
rồi áp dụng BĐT Cô-si SVAC-XƠ
thì x2+y2+z2<= (x+y+z)2/3 = 1/3
rồi chia 1 cho 1/3 rồi 3.736=2208>2015
Câu hỏi của Minh Hà Tuấn - Toán lớp 9 - Học toán với OnlineMath
trả lời giúp mình đi, mình lập 5 nick khác k cho, tất cả được 6 k