Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{xyz}{x+y}\Rightarrow\frac{1}{A}=\frac{x+y}{xyz}\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{x+y}{xyz}=\frac{x}{xyz}+\frac{y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\ge\frac{\left(1+1\right)^2}{yz+xz}=\frac{4}{z\left(x+y\right)}\)(1)
Lại có \(z\left(x+y\right)\le\frac{\left(x+y+z\right)^2}{4}=\frac{9}{4}\)(theo AM-GM) => \(\frac{4}{z\left(x+y\right)}\ge\frac{16}{9}\)(2)
Từ (1) và (2) => \(\frac{x+y}{xyz}\ge\frac{4}{z\left(x+y\right)}\ge\frac{16}{9}\)=> \(\frac{x+y}{xyz}\ge\frac{16}{9}\)hay \(\frac{1}{A}\ge\frac{16}{9}\)
=> A ≤ 9/16. Đẳng thức xảy ra <=> z = 3/2 ; x = y = 3/4
Vậy MaxA = 9/16 <=> x = y = 3/4 ; z = 3/2
\(9=3^2=\left(x+y+z\right)^2\ge4\left(x+y\right)z\)
\(\rightarrow9.\frac{x+y}{xyz}\ge4.\frac{\left(x+y\right)^2}{xy}\ge4.\frac{4xy}{xy}=16\)
\(\rightarrow\frac{x+y}{xyz}\ge\frac{16}{9}\rightarrow\frac{xyz}{x+y}\le\frac{9}{16}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{3}{4};z=\frac{3}{2}\)
P=x/x+1 + y/y+1 + z/z+1=x+1-1/x+1 + y+1-1/y+1 + z+1-1/z+1
=1 - 1/x+1 + 1 - 1/y+1 + 1 - 1/z+1
=3 - (1/x+1 + 1/y+1 + 1/z+1)
Áp dụng bđt cauchy- schwarz dạng engel:
1/x+1 + 1/y+1 + 1/z+1 = 12/x+1 + 12/y+1 + 12/z+1 >/ (1+1+1)2/x+1+y+1+z+1 >/ 9/4 (do x+y+z=1)
=> P </ 3 - 9/4 = 3/4
maxP=3/4
We have:
\(A=\Sigma_{cyc}\frac{1}{3xy+3zx+x+y+z}\le\frac{1}{3xy+3zx+3\sqrt[3]{xyz}}=\Sigma_{cyc}\frac{1}{3xy+3zx+3}=\Sigma_{cyc}\frac{1}{3\left(xy+zx+1\right)}\)
Dat \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow abc=1\)
\(\Rightarrow A\le\Sigma_{cyc}\frac{1}{3\left(\frac{1}{ab}+\frac{1}{ca}+1\right)}=\Sigma_{cyc}\frac{a}{3\left(a+b+c\right)}=\frac{1}{3}\)
Dau '=' xay ra khi \(x=y=z=1\)
Đặt z -60 = t
\(x+y+z=100\Rightarrow x+y+t=40;\)
\(\Leftrightarrow x+y+t\ge3\sqrt[3]{xyt}\Leftrightarrow xyt\le\frac{\left(x+y+t\right)^3}{3^3}=\left(\frac{40}{3}\right)^3\)
\(Max\left(xyt\right)=\left(\frac{40}{3}\right)^3\) khi x =y =t =40/3 => z =60+t =60+40/3=220/3
=>\(xyz\le\frac{40}{3}.\frac{40}{3}.\frac{220}{3}=\frac{352000}{27}\) khi x =y =40/3 ; z =220/3