Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Bunhiacopxki vào bài toán , ta có :
\(\left(\sqrt{4x+1}+\sqrt{4y+1}+\sqrt{4z+1}\right)^2\le\left(1^2+1^2+1^2\right)\left(4x+4y+4z+3\right)=3.7=21\)
\(\Rightarrow\sqrt{4x+1}+\sqrt{4y+1}+\sqrt{4z+1}\le\sqrt{21}\)
Đẳng thức xảy ra khi : \(x=y=z=\dfrac{1}{3}\)
Áp dụng bất đẳng thức bunhiacopxki ta có :
\(\left(\sqrt{4x+1}+\sqrt{4y+1}+\sqrt{4z+1}\right)^2\le\left(1+1+1\right)\left(4x+1+4y+1+4z+1\right)\)
\(=3.\left[4\left(x+y+z\right)+3\right]=3.7=21\)
\(\Rightarrow\sqrt{4x+1}+\sqrt{4y+1}+\sqrt{4z+1}\le\sqrt{21}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{3}\)
\(A=\sum\sqrt{4x+2\sqrt{x}+1}\)
\(Max_A=+\infty\)
\("="x=y=z=+\infty\)
Áp dụng bất đẳng thức Bunyakovsky:
\(NL^2=\left(\sqrt{4x+2\sqrt{x}+1}+\sqrt{4y+2\sqrt{y}+1}+\sqrt{4z+2\sqrt{z}+1}\right)^2\)
\(\le\left(1^2+1^2+1^2\right)\left(4x+2\sqrt{x}+1+4y+2\sqrt{y}+1+4z+2\sqrt{z}+1\right)\)
\(=3\left(4x+4y+4z\right)+3\left(2\sqrt{x}+2\sqrt{y}+2\sqrt{z}\right)+3\left(1+1+1\right)\)
\(=12\left(x+y+z\right)+6\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+9\)
\(=153+6\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
Mặt khác,theo Bunyakovsky: \(\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\le3\left(x+y+z\right)=36\)
\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le6\)
\(\Rightarrow153+6\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\le153+36=189\)
\(\Rightarrow NL\le\sqrt{189}\)
Dấu "=" xảy ra khi: \(x=y=z=4\)
Bài 1 :
Ta có : \(\dfrac{1}{3a^2+b^2}+\dfrac{2}{b^2+3ab}=\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\)
Theo BĐT Cô - Si dưới dạng engel ta có :
\(\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\ge\dfrac{\left(1+2\right)^2}{3a^2+6ab+3b^2}=\dfrac{9}{3\left(a+b\right)^2}=\dfrac{9}{3.1}=3\)
Dấu \("="\) xảy ra khi : \(a=b=\dfrac{1}{2}\)
Bài 1:
a) Bạn xem lại đề bài hộ mình.
b) Thực hiện biến đổi tương đương:
\((x+y+z)^2\leq 3(x^2+y^2+z^2)\)
\(\Leftrightarrow x^2+y^2+z^2+2(xy+yz+xz)\leq 3(x^2+y^2+z^2)\)
\(\Leftrightarrow 2(xy+yz+xz)\leq 2(x^2+y^2+z^2)\)
\(\Leftrightarrow 2(x^2+y^2+z^2)-2(xy+yz+xz)\geq 0\)
\(\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2\geq 0\)
BĐT trên luôn đúng do \(\left\{\begin{matrix} (x-y)^2\geq 0\\ (y-z)^2\geq 0\\ (z-x)^2\geq 0\end{matrix}\right., \forall x,y,z\in\mathbb{R}\)
Do đó ta có đpcm.
Dấu bằng xảy ra khi \(x=y=z\)
Bài 2:
\(A=\sqrt{4x+2\sqrt{x}+1}+\sqrt{4y+2\sqrt{y}+1}+\sqrt{4z+2\sqrt{z}+1}\)
\(\Rightarrow 2A=\sqrt{16x+8\sqrt{x}+4}+\sqrt{16y+8\sqrt{y}+4}+\sqrt{16z+8\sqrt{z}+4}\)
\(=\sqrt{18x-2(\sqrt{x}-2)^2+12}+\sqrt{18y-2(\sqrt{y}-2)^2+12}+\sqrt{18z-2(\sqrt{z}-1)^2+12}\)
\(\Rightarrow 2A\leq \sqrt{18x+12}+\sqrt{18y+12}+\sqrt{18z+12}(1)\)
Áp dụng BĐT Bunhiacopxky:
\((\sqrt{18x+12}+\sqrt{18y+12}+\sqrt{18z+12})^2\leq [(18x+12)+(18y+12)+(18z+1)](1+1+1)\)
\(=3[18(x+y+z)+36]=756\)
\(\Rightarrow \sqrt{18x+12}+\sqrt{18y+12}+\sqrt{18z+12}\leq \sqrt{756}=6\sqrt{21}(2)\)
Từ \((1); (2)\Rightarrow 2A\leq 6\sqrt{21}\Rightarrow A\leq 3\sqrt{21}\)
Vậy \(A_{\max}=3\sqrt{21}\). Dấu bằng xảy ra khi \(x=y=z=4\)
\(\left(\sqrt{4x+1}+\sqrt{4y+1}+\sqrt{4z+1}\right)^2\le\left(1^2+1^2+1^2\right)\left(4x+1+4y+1+4z+1\right)=21.\)
\(\Leftrightarrow\sqrt{4x+1}+\sqrt{4y+1}+\sqrt{4z+1}\le\sqrt{21}\left(đpcm\right)\)
Dấu "=" xra :
\(\frac{4x+1}{1}=\frac{4y+1}{1}=\frac{4z+1}{1}\Rightarrow x=y=z=\frac{1}{3}\)