Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho (x+ y +z)( xy + yz +xz) = xyz
CMR x\(^{2017}\)+ y\(^{2017}\)+z \(^{2017}\)= (x+ y + z)\(^{2017}\)
(x+y+z)(xy+yz+zxx)=xyz
<=>(x+y+z)(xy+yz+zx)-xyz=0
<=>3(x+y)(y+z)(z+x)=0
<=>(x+y)(y+z)(z+x)=0
<=>x=-y;y=-z;z=-x
x=-y => (-y)^2017+y^2017+z^2017=z^2017=(-y+y+z)^2017
tương tự 2 trường hợp còn lại ^_^
Ta có:
\(\left(x+y+z\right)\left(xy+yz+zx\right)=xyz\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow x=-y;y=-z;z=-x\)
Với \(x=-y\)
\(\Rightarrow x^{2017}+y^{2017}+z^{2017}=z^{2017}=\left(x+y+z\right)^{2017}\)
Tương tự cho 2 trường hợp còn lại
bài 1
ab+bc+ca=0
=>ab+bc=-ca
ta có (a+b)(b+c)(c+a)/abc
=> (ab+ac+bc+b2)(c+a)/abc
=> (0+b2)(c+a)/abc
=>b2c+b2a/abc
=>b(ab+bc)/abc
=>b(-ac)/abc
=>-abc/abc=-1
thay xyz=2017 vaf 2017=xyz a đc :
\(\frac{xyz.x}{xy+xyz.x+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)=\(\frac{xyz.x}{xy.\left(xz+z+1\right)}+\frac{y}{y.\left(xz+z+1\right)}+\frac{z}{xz+z+1}\)
=\(\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}=\frac{xz+z+1}{xz+z+1}=1\)
\(\left(x+y+z\right)\left(xy+yz+zx\right)=xyz\\ \Leftrightarrow\left(x+y+z\right)\left(xy+yz+zx\right)-xyz=0\\ \Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)
\(\forall x=-y\Leftrightarrow VT=-y^{2017}+y^{2017}+z^{2017}=z^{2017}=\left(-y+y+z\right)^{2017}=VP\\ \forall y=-z\Leftrightarrow VT=x^{2017}-z^{2017}+z^{2017}=x^{2017}=\left(x-z+z\right)^{2017}=VP\\ \forall z=-x\Leftrightarrow VT=x^{2017}+y^{2017}-x^{2017}=y^{2017}=\left(x+y-x\right)^{2017}=VP\)
Vậy ta đc đpcm