Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong de thi hsg cap Thanh pho Ha Noi 2016-2017 co dap an do ban
\(\Leftrightarrow\left\{{}\begin{matrix}xy=z^2-5z+8\\x+y=5-z\end{matrix}\right.\)
điều kiện có nghiệm x;y
\(\left(5-z\right)^2-4\left(z^2-5z+8\right)\ge0\)
\(\Leftrightarrow-3z^2+10z-7\ge0\Leftrightarrow\left(z-1\right)\left(3z-7\right)\le0\)
\(\Leftrightarrow1\le z\le\dfrac{7}{3}\)
\(P=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{2}{2xy+2yz+2xz}\)
Theo Bất đẳng thức Cauchy Schwarz dạng Engel ta được :
\(\frac{1}{x^2+y^2+z^2}+\frac{\sqrt{2}^2}{2xy+2yz+2xz}\ge\frac{\left(1+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}\)
\(\ge\frac{1+2\sqrt{2}+2}{1^2}=3+2\sqrt{2}\)
Đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}...\\...\\...\end{cases}}\)
Vậy \(Min_P=3+2\sqrt{2}\)khi và chỉ khi ...
dấu = bạn tự xét nhé :V
Áp dụng BĐT AM-GM ta có:
\(x^2\cdot\dfrac{4}{9}+y^2\cdot\dfrac{4}{9}\ge\dfrac{8xy}{9}\)
\(x^2\cdot\left(\dfrac{4}{3}\right)^2+z^2\cdot\left(\dfrac{1}{3}\right)^2\ge\dfrac{8xz}{9}\)
\(y^2\cdot\left(\dfrac{4}{3}\right)^2+z^2\cdot\left(\dfrac{1}{3}\right)^2\ge\dfrac{8yz}{9}\)
CỘng theo vế 3 BĐt trên ta có:
\(\dfrac{2}{9}\left(10x^2+10y^2+z^2\right)\ge\dfrac{8\left(xy+yz+xz\right)}{9}\)
\(\Leftrightarrow10x^2+10y^2+z^2\ge4\left(xy+yz+xz\right)=4\)