K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2018

Áp dụng BĐT AM-GM ta có:

\(x^2\cdot\dfrac{4}{9}+y^2\cdot\dfrac{4}{9}\ge\dfrac{8xy}{9}\)

\(x^2\cdot\left(\dfrac{4}{3}\right)^2+z^2\cdot\left(\dfrac{1}{3}\right)^2\ge\dfrac{8xz}{9}\)

\(y^2\cdot\left(\dfrac{4}{3}\right)^2+z^2\cdot\left(\dfrac{1}{3}\right)^2\ge\dfrac{8yz}{9}\)

CỘng theo vế 3 BĐt trên ta có:

\(\dfrac{2}{9}\left(10x^2+10y^2+z^2\right)\ge\dfrac{8\left(xy+yz+xz\right)}{9}\)

\(\Leftrightarrow10x^2+10y^2+z^2\ge4\left(xy+yz+xz\right)=4\)

25 tháng 12 2017

Trong de thi hsg cap Thanh pho Ha Noi 2016-2017 co dap an do ban

26 tháng 12 2017

uk  thanks bn

22 tháng 3 2018

\(\Leftrightarrow\left\{{}\begin{matrix}xy=z^2-5z+8\\x+y=5-z\end{matrix}\right.\)

điều kiện có nghiệm x;y

\(\left(5-z\right)^2-4\left(z^2-5z+8\right)\ge0\)

\(\Leftrightarrow-3z^2+10z-7\ge0\Leftrightarrow\left(z-1\right)\left(3z-7\right)\le0\)

\(\Leftrightarrow1\le z\le\dfrac{7}{3}\)

1 tháng 9 2019

\(P\ge\frac{x+y+z}{2}=\frac{\sqrt{\left(x+y+z\right)^2}}{2}\ge\frac{\sqrt{3\left(xy+yz+zx\right)}}{2}=\frac{\sqrt{3}}{2}\)

\("="\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

13 tháng 7 2020

\(P=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{2}{2xy+2yz+2xz}\)

Theo Bất đẳng thức Cauchy Schwarz dạng Engel ta được :

\(\frac{1}{x^2+y^2+z^2}+\frac{\sqrt{2}^2}{2xy+2yz+2xz}\ge\frac{\left(1+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}\)

\(\ge\frac{1+2\sqrt{2}+2}{1^2}=3+2\sqrt{2}\)

Đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}...\\...\\...\end{cases}}\)

Vậy \(Min_P=3+2\sqrt{2}\)khi và chỉ khi ...

dấu = bạn tự xét nhé :V

13 tháng 7 2020

dấu = xảy ra ko đúng rồi phải