K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2017

1/ y2(x - y) + z2(x - z) 

= y2x - y3 + z2x - z3

= x(y2 + z2) - y3 - z3

= x3 - y3 - z3

29 tháng 3 2016

\(\frac{x^3}{y}+xy\ge2\sqrt{\frac{x^3}{y}.xy}=2x^2\)

\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge2\left(x^2+y^2+z^2\right)-xy-yz-zx\ge2\left(x^2+y^2+z^2\right)-\left(xy+yz+zx\right)=1\)

29 tháng 3 2016

\(\frac{x^3}{y}+xy\ge2\sqrt{\frac{x^3}{y}.xy}=2x^2\)

\(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge2\left(x^2+y^2+z^2\right)-\left(xy+yz+zx\right)\ge2\left(x^2+y^2+z^2\right)-\left(x^2+y^2+z^2\right)=1\)

7 tháng 8 2017

=2/(xy+yz+zx)+2/(x^2+y^2+z^2)+1/xy+yz+zx

>=2(4/(x+y+z)^2)+1/(1/3)>=8+3=11(hình như sai đề nhưng cách làm là đúng rồi)

7 tháng 8 2017

=2/(xy+yz+zx)+2/(x^2+y^2+z^2)+1/xy+yz+zx

>=2(4/(x+y+z)^2)+1/(1/3)>=8+3=11(hình như sai đề nhưng cách làm là đúng rồi)

25 tháng 2 2018

voi x,y,z>0 ta co

ap dung bdt co si ta co

\(T>=3\sqrt[3]{\sqrt{\left(\frac{x^2+1}{x^2}+\frac{1}{y^2}\right)\left(\frac{y^2+1}{y^2}+\frac{1}{z^2}\right)\left(\frac{z^2+1}{z^2}+\frac{1}{x^2}\right)}}\)

=\(3\sqrt[3]{\sqrt{\left(1+\frac{1}{x^2}+\frac{1}{y^2}\right)\left(1+\frac{1}{y^2}+\frac{1}{z^2}\right)\left(1+\frac{1}{z^2}+\frac{1}{x^2}\right)}}\)

>=\(3\sqrt[3]{\sqrt{3\sqrt[3]{\frac{1}{x^2y^2}}.3\sqrt[3]{\frac{1}{y^2z^2}}.3\sqrt[3]{\frac{1}{x^2z^2}}}}=3\sqrt[3]{\sqrt{27\sqrt[3]{\frac{1}{\left(xyz\right)^4}}}}\)

=\(3\sqrt[3]{\sqrt{27.\frac{1}{xyz}.\sqrt[3]{\frac{1}{xyz}}}}=3\sqrt{3}.\sqrt[9]{\frac{1}{\left(xyz\right)^2}}\)

ap dung bdt co si ta co 

\(x+y+z>=3\sqrt[3]{xyz}\)

<=>3>=\(3\sqrt[3]{xyz}\left(dox+y+z=3\right)\)

<=>xyz<=1

<=>1/xyz>=1

<=>\(\sqrt[9]{\frac{1}{\left(xyz\right)^2}}>=1\)

do do T>=\(3\sqrt{3}\)

dau = xay ra <=>x=y=z=1

25 tháng 2 2018
phai cam on day
12 tháng 10 2017

drthe46he46he46