Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lên gg sợt cách chứng minh bất đẳng thức buniakovsky nhé
Phương Trình Hai Ẩn, bạn ơi nếu thế mk hỏi trên đấy r, chứ k mất thời gian hỏi ở đây đâu bạn
Đề sai rồi bạn
Vế phải : \(\left(ax+aby+3cz\right)^2\)
\(=a^2x^2+a^2b^2y^2+9c^2z^2+2a^2bxy+6abcyz+6axcz\)
Vế trái : \(\left(x^2+2y^2+3z^2\right)\left(a^2+2b^2+3c^2\right)\)
\(=\left(x^2+2y^2+3z^2\right)a^2+\left(x^2+2y^2+3z^2\right)2b^2+\left(x^2+2y^2+3z^2\right)3c^2\)
\(=x^2a^2+2a^2y^2+3a^2z^2+2b^2x^2+4b^2y^2+6b^2z^2+3x^2c^2+6c^2y^2+9c^2z^2\)
Ko hề bằng nhau
\(\Rightarrow\)đề sai
Bị tự tin quá khả năng nhẩm mồm, sai em xin lỗi ...
a, Ta có \(P\left(x\right)=8x^3+2x^2-3x-3x^3+10-x-2x^2-3\)
\(=5x^3-4x-7\)
\(Q\left(x\right)=9x^3-4x^2+2x-3+2x+3x^2+4x^3-2\)
\(=13x^3-x^2+4x-5\)
b, Ta có : \(P\left(-\frac{1}{2}\right)=5.\left(-\frac{1}{2}\right)^3-4.\left(-\frac{1}{2}\right)-7=-\frac{45}{8}\)
c , \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(5x^3-4x-7+13x^3-x^2+4x-5=18x^3-x^2-12\)
\(N\left(x\right)=P\left(x\right)-Q\left(x\right)\)
\(5x^3-4x-7-13x^3+x^2-4x+5=-8x^3-8x-2+x^2\)
d, Đặt \(5x^3-4x-7=0\)( vô nghiệm )
a) a3+b3+a2c+b2c-abc
= (a+b)(a2-ab+b2)+c(a2+b2)-abc
=(a+b) [ (a+b)2-3ab]+c.[(a+b)2-2ab]-abc
=(a+b)(a+b)2-3ab(a+b)+c(a+b)2-3abc
=(a+b)2(a+b+c)-3ab(a+b+c)
=(a+b)2.0-3ab.0
=0
b) ax+ay+2x+2y+4
=a(x+y)+2(x+y)+4
=(x+y)(a+2)+4
=(a-2)(a+2)+4
=a2-4+4
=a2
c) A=1+x+x2+...+x49=>Ax=x+x2+x3+...+x50
- A=1+x+x2+...+x49
---> Ax-A=x50-1
d)(a+b)(a+c)+(c+a)(c+b)
=a2+ac+ab+bc+c2+bc+ac+ab
=a2+c2+2ac+2ab+2bc
=2b2+2bc+2ac+2ab
=2b(b+c)+2a(b+c)
=2b(b+c)(b+a)
Lời giải:
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=m\Rightarrow x=am; y=bm; z=cm\)
Khi đó:
\((x^2+2y^2+3z^2)(a^2+2b^2+3c^2)=[(am)^2+2(bm)^2+3(cm)^2](a^2+2b^2+3c^2)\)
\(=m^2(a^2+2b^2+3c^2)^2(1)\)
Và:
\((ax+2by+3cz)^2=(a.am+2b.bm+3c.cm)^2=[m(a^2+2b^2+3c^2)]^2\)
\(=m^2(a^2+2b^2+3c^2)^2(2)\)
Từ (1) và (2) ta có đpcm.
@Akai Haruma ???