K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Em chỉ mới lớp 7 thôi

11 tháng 3 2016

em moi lop 5 thui,check nha anh

AH
Akai Haruma
Giáo viên
7 tháng 9 2024

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

$\frac{1}{6x+y+z}\leq \frac{1}{64}(\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=\frac{1}{64}(\frac{6}{x}+\frac{1}{y}+\frac{1}{z})$

Tương tự:

$\frac{1}{x+6y+z}\leq \frac{1}{64}(\frac{1}{x}+\frac{6}{y}+\frac{1}{z})$
$\frac{1}{x+y+6z}\leq \frac{1}{64}(\frac{1}{x}+\frac{1}{y}+\frac{6}{z})$
Cộng theo vế các BĐT trên và thu gọn thì:

$A\leq \frac{1}{64}(\frac{8}{x}+\frac{8}{y}+\frac{8}{z})=\frac{1}{8}(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=\frac{xy+yz+xz}{8xyz}=\frac{4xyz}{8xyz}=\frac{1}{2}$

Vậy $A_{\max}=\frac{1}{2}$

Giá trị này đạt tại $x=y=z=\frac{3}{4}$