K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 12 2019

Lời giải:

Đặt $(a^{1007}, b^{1007}, c^{1007})=(x,y,z)$

Khi đó, ĐKĐB tương đương với:

$x^2+y^2+z^2=xy+yz+xz$

$\Leftrightarrow 2x^2+2y^2+2z^2=2xy+2yz+2xz$

$\Leftrightarrow (x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2zx+x^2)=0$

$\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0$

Ta thấy $(x-y)^2, (y-z)^2, (z-x)^2\geq 0$ với mọi $x,y,z$

Do đó để tổng của chúng bằng $0$ thì $(x-y)^2=(y-z)^2=(z-x)^2=0$

$\Rightarrow x=y=z$

$\Leftrightarrow a^{1007}=b^{1007}=c^{1007}$

$\Leftrightarrow a=b=c$

Khi đó:

$A=0^{2014}+0^{2015}+0^{2016}=0$

29 tháng 11 2016

Ta có:

\(M=\frac{x\left(yz-x^2\right)+y\left(zx-y^2\right)+z\left(xy-z^2\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{xyz-x^3+xyz-y^3+xyz-z^3}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{3xyz-x^3-y^3-z^3}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

\(-M=\frac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

Xét đẳng thức phụ:

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=\left[\left(a +b\right)^3+c^3\right]-3ab\left(a+b+c\right)\)\(=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2-ab\right]=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(=\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-abc-ac\right)\)

\(=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)

Thay vào -M ta có:

\(-M=\frac{\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{1}{2}\left(x+y+z\right)\Rightarrow M=-\frac{1}{2}\left(x+y+z\right)\)

Giờ thay: \(x=2014^{2015}-20142015;y=20142015-2015^{2014};z=2015^{2014}-2014^{2015}\)

Ta có:

\(M=-\frac{1}{2}\left(2014^{2015}-20142015+20142015-2015^{2014}+2015^{2014}-2014^{2015}\right)=0\)

29 tháng 11 2016

Bạn làm ngược từ cuối á .... cũng sáng tạo ý

10 tháng 7 2020

Bài làm:

Sửa lại đề: \(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z=-34\)

\(\Leftrightarrow\left(4x^2+y^2+z^2-4xy-4xz+2yz\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)

\(\Leftrightarrow\left(y+z-2x\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)

Mà \(\hept{\begin{cases}\left(y+z-2x\right)^2\ge0\\\left(y-3\right)^2\ge0\\\left(z-5\right)^2\ge0\end{cases}\left(\forall x,y,z\right)}\)nên dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(y+z-2x\right)^2=0\\\left(y-3\right)^2=0\\\left(z-5\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\)

Thay x,y,z vào Q ta tính được:

\(Q=\left(4-4\right)^{2014}+\left(3-4\right)^{2014}+\left(5-4\right)^{2014}=0+1+1=2\)

Vậy Q=2

6 tháng 11 2016

Đặt \(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}=k\)

\(\Rightarrow\hept{\begin{cases}x=2013k\\y=2014k\\z=2015k\end{cases}}\)

Ta có :

4(x - y)(y - z) = 4(2013k - 2014k)(2014k - 2015k) 

                    =4.(-k).(-k) = 4k2  (1)

(z - x)2 = (2015k - 2013k)2 = (2k)2 = 4k2  (2)

Từ 1 và 2 

=> 4(x - y)(y - z) = (z - x)2

10 tháng 7 2018

1 c nha các bạn

9 tháng 8 2018

Ta có:\(P=x^3\left(z-y^2\right)+y^3x-y^3z^2+z^3y-z^3x^2+x^2y^2z^2-xyz\)

\(\Rightarrow P=x^3\left(z-y^2\right)+x^2y^2z^2-x^2z^3-\left(y^3z^2-z^3y\right)+y^3x-xyz\)

\(\Rightarrow P=x^3\left(z-y^2\right)+x^2z^2\left(y^2-z\right)-yz^2\left(y^2-z\right)+xy\left(y^2-z\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3-yz^2+xy\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3+xy-yz^2\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)+y\left(x-z^2\right)\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)-y\left(z^2-x\right)\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(z^2-x\right)\left(x^2-y\right)\)

\(\Rightarrow P=abc\)

Vì a, b, c là hằng số nên P có giá trị không phụ thuộc vào x, y, z

26 tháng 2 2016

\(=\frac{1}{3}\) chắc chắn đúng luôn

Nhớ ủng hộ