Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài để tồn tại phân số: \(\frac{1}{x+y+z}\) ta có: \(x+y+z\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\frac{1}{x+y+z}=2\Leftrightarrow x+y+z=\frac{1}{2}\Leftrightarrow\hept{\begin{cases}x+y=\frac{1}{2}-z\\y+z=\frac{1}{2}-x\\z+x=\frac{1}{2}-y\end{cases}}\)
Thay vào đề bài ta có: \(\frac{\frac{1}{2}-x+1}{x}=\frac{\frac{1}{2}-y+2}{y}=\frac{\frac{1}{2}-z-3}{z}=2\)
Dễ dàng tìm được x;y;z rồi thay vào b thức
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)
\(\Rightarrow\hept{\begin{cases}y+z+1=2x\\x+z+2=2y\\x+y+z=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)
\(A=2016x+y^{2017}+z^{2017}=2016.\frac{1}{2}+\left(\frac{5}{6}\right)^{2017}+\left(-\frac{5}{6}\right)^{2017}=1008\)
làm lần lượt nhá,dài dòng quá khó coi.ahihihi!
\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{7\left(\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)
\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}=\frac{1}{4}\)
ta có y+z-x/x=z+x-y/y=x+y-z/z=y+z-x+z+x-y+x+y-z/x+y+z=(2y-y)+(2x-x)+(2z-z)/x+y+z=y+x+z/x+y+z=1
=>y+z-x/x=1 =>z+x-y/y=1
z+x-y/y=1 x+y-z/z=1
=> y+z-x=x => z+x-y=y
z+x-y=y x+y-z=z
=>2y-2x=x-y =>2z-2y=y-z
3y-3x=0 3z-3y=0
y-x=0 z-y=0
=>x=y =>z=y
=>x=y=z
=> y+z-x/x+z+x-y/y+x+y-z/z= 0,(3)+0,(3)+0,(3)=1
=>x +y+z=0,(3)+0,(3)+0,(3)=1
thay vào b=(1+x/y). (1+y/z). (1+z/x)
b=(1+0,(3)/0,(3)).(1+0,(3)/0,(3)).(1+0,(3)/0,(3))
b=(1+1).(1+1).(1+1)
b=2.2.2
b=2^3
b=8
CÂU TRẢ LỜI TRƯỚC MK BẤM NHẦM
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}\)
\(=\frac{x+y+z}{x+y+z}=1\Rightarrow y+z-x=x;z+x-y=y;x+y-z=z\)
\(\Rightarrow x=y=z\)
\(\Rightarrow B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)\)
\(=2.2.2=8\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có
y + z - x / x = z + x - y / y = x + y - z / z = y + z - x + z +x - y + x + y - z / x + y + z = x + y + z / x + y + z
TH1 : x + y + z = 0
=> x + y = - z ; y + z = - x và x + z = -y
Ta có : B = ( 1 + x / y ) ( 1 + y / z ) ( 1 + z / x )
= ( x + y / y ) ( z + y / z ) ( x + z / x ) ( 1 )
= - z / y . ( - x / z ) ( -y / x )
= - 1
TH2 : x + y + z khác 0
Do đó y + z - x / x = z + x - y / y = x + y - z / z = x + y + z / x + y + z = 1
thì y + z - x / x = 1 => y + z - x = x => y + z = 2x ( 2 )
z + x - y / y = 1 z + x - y = y z + x = 2y ( 3 )
x + y - z / z = 1 x + y - z = z x + y = 2z ( 4 )
Thay ( 2 ) , ( 3 ) , ( 4 ) vào ( 1 ) ta có
B = 2x/y . 2y / z . 2z / x
= 2 . 2 . 2 = 8
Vậy B = - 1 khi x + y + z = 0
B = 8 khi x + y + z khác 0
[ xin lỗi nha , tại mình không biết viết phân số ]
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)(vì x + y + z khác 0)
=> \(\frac{1}{x+y+z}=2\) => x + y + z = 1/2
=> \(\hept{\begin{cases}\frac{y+z+1}{x}=2\\\frac{x+z+2}{y}=2\\\frac{x+y-3}{z}=2\end{cases}}\) => \(\hept{\begin{cases}y+z+1=2x\\x+z+2=2y\\x+y-3=2z\end{cases}}\) => \(\hept{\begin{cases}3x=x+y+z+1\\3y=x+y+z+2\\3z=x+y+z-3\end{cases}}\)=> \(\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{5}{2}\\3z=-\frac{5}{2}\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)
Khi đó: A = \(2016\cdot\frac{1}{2}+\left(\frac{5}{6}\right)^{2017}-\left(\frac{5}{6}\right)^{2017}=1008\)
Ta có \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)
\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Khi đó \(\frac{1}{x+y+z}=2\Rightarrow x+y+z=\frac{1}{2}\)
Lại có \(\frac{y+z+1}{x}=2\Rightarrow y+z+1=2x\Rightarrow x+y+z+1=3x\Rightarrow\frac{1}{2}+1=3x\Rightarrow3x=\frac{3}{2}\)
=> x = 1/2
Lại có \(\frac{x+z+2}{y}=2\Rightarrow x+z+2=2y\Rightarrow x+y+z+2=3y\Rightarrow\frac{1}{2}+2=3y\Rightarrow3y=\frac{5}{2}\)
=> y = 5/6
Lại có x + y + z = 1/2
=> 1/2 + 5/6 + z = 1/2
=> 5/6 + z = 0
=> z = -5/6
Khi đó A = 2016X + y2017 + z2017
= 2016.1/2 + (5/6)2017 - (5/6)2017
= 1008
Vậy A = 1008