K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2016

Ta có:

\(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}=\frac{xyz}{xy+x+xyz}+\frac{y}{yz+y+1}+\frac{1}{1+yz+y}\)

                                              \(=\frac{xyz}{x.\left(y+1+yz\right)}+\frac{y}{yz+y+1}+\frac{1}{1+yz+y}\)

                                              \(=\frac{yz}{y+1+yz}+\frac{y}{yz+y+1}+\frac{1}{1+yz+y}\)

                                               \(=\frac{yz+y+1}{yz+y+1}=1\left(đpcm\right)\)

13 tháng 10 2016

bạn cho mình biết sau dấu + bị che khuất là số nào được k?

 

2 tháng 4 2016

= 1 nhé

2 tháng 4 2016

thay x.y.z zô biểu thức đi . rùi đặt nhân tử chung rùi tự làm , đến đó mà k làm dc nữa  thì die đi

5 tháng 12 2018

ta có :

\(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}\)

\(\frac{xyz}{xy+x+xyz}+\frac{y}{yz+y+1}+\frac{xyz}{1+yz+y}\)

\(\frac{yz+y+xyz}{y+1+yz}\)

\(\frac{yz+y+1}{yz+y+1}\)

=1

10 tháng 12 2019

luffy123 làm đúng mà sao vẫn có đứa bảo sai kìa

25 tháng 7 2019

\(A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)

\(A=\frac{x-z}{x}\cdot\frac{y-x}{y}\cdot\frac{y+z}{z}\)

Do \(x-y-z=0\)

\(\Rightarrow x-z=y;y-x=-z;y+z=x\)

Khi đó \(A=\frac{y}{x}\cdot\frac{-z}{y}\cdot\frac{x}{z}=-1\)

Vậy A=-1

25 tháng 7 2019

\(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}\)

\(=\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{1+yz+y}\)

\(=\frac{1}{xy+x+1}+\frac{y+1}{yz+y+1}\)

\(=\frac{yz}{xy\cdot yz+xyz+yz}+\frac{y+1}{yz+y+1}\)

\(=\frac{yz}{yz+y+1}+\frac{y+1}{yz+y+1}\)

\(=\frac{yz+y+1}{yz+y+1}\)

\(=1\)

12 tháng 12 2016

\(\frac{2013x}{xy+2013x+2013}+\frac{y}{yz+y+2013}+\frac{z}{xz+z+1}\)

\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)

\(=\frac{xz+z+1}{xz+z+1}=1\)

=>đpcm

12 tháng 12 2016

2013x/xy+2013x+2013 + y/yz+y+2013 + z/xz+z+1

= xyz.x/xy+xyz.x+xyz + y/yz+y+xyz + z/xz+z+1

= xz/1+xz+z + 1/z+1+xz + z/xz+z+1

= xz+1+x/1+xz+x = 1 (đpcm)

21 tháng 3 2020

Do \(xyz=1\)nên:

\(\frac{1}{xy+x+1}+\frac{1}{yz+y+1}+\frac{1}{xz+z+1}=1\)

\(=\frac{1}{xy+x+1}+\frac{x}{xyz+xy+z}+\frac{xy}{x^2yz+xyz+xy}\)

\(=\frac{1}{xy+x+1}+\frac{x}{1+xy+x}+\frac{xy}{x+1+y}=1\)

=> ĐPCM

22 tháng 3 2020

\(xyz=1\) nên tồn tại \(x=\frac{a}{b};y=\frac{b}{c};z=\frac{c}{a}\)

\(\frac{1}{xy+x+1}+\frac{1}{yz+y+1}+\frac{1}{zx+z+1}\)

\(=\frac{1}{\frac{a}{b}\cdot\frac{b}{c}+\frac{a}{b}+1}+\frac{1}{\frac{b}{c}\cdot\frac{c}{a}+\frac{b}{c}+1}+\frac{1}{\frac{c}{a}\cdot\frac{a}{b}+\frac{c}{a}+1}\)

\(=\frac{1}{\frac{a}{c}+\frac{a}{b}+1}+\frac{1}{\frac{b}{a}+\frac{b}{c}+1}+\frac{1}{\frac{c}{b}+\frac{c}{a}+1}\)

\(=\frac{bc}{ab+ac+cb}+\frac{ac}{bc+ab+ac}+\frac{ab}{ac+bc+ab}\)

\(=\frac{ab+bc+ca}{ab+bc+ca}=1\)