Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{xy}{x+y}=\dfrac{yz}{y+z}=\dfrac{zx}{z+x}\\ \Rightarrow\dfrac{x+y}{xy}=\dfrac{y+z}{yz}=\dfrac{z+x}{zx}\\ \Rightarrow\dfrac{1}{y}+\dfrac{1}{x}=\dfrac{1}{z}+\dfrac{1}{y}=\dfrac{1}{x}+\dfrac{1}{z}\\ \Rightarrow\dfrac{1}{x}=\dfrac{1}{y}=\dfrac{1}{z}\\ \Rightarrow x=y=z\)
\(\Rightarrow P=\dfrac{xy+yz+zx}{x^2+y^2+z^2}=\dfrac{x^2+x^2+x^2}{x^2+x^2+x^2}=1\)
ta có: \(\frac{x^2-yz}{a}=\frac{y^2-xz}{b}=\frac{z^2-xy}{c}\)
\(\Rightarrow\frac{a}{x^2-yz}=\frac{b}{y^2-xz}=\frac{c}{z^2-xy}\Rightarrow\frac{a^2}{\left(x^2-yz\right)^2}=\frac{b^2}{\left(y^2-xz\right)^2}=\frac{c^2}{\left(z^2-xy\right)^2}\) (1)
=> \(\frac{a}{\left(x^2-yz\right)}.\frac{a}{\left(x^2-yz\right)}=\frac{b}{y^2-xz}.\frac{c}{z^2-xy}=\frac{a^2}{\left(x^2-yz\right)^2}=\frac{bc}{\left(y^2-xz\right).\left(z^2-xy\right)}\)
a^2/(x^2-yz)^2 = (a^2-bc)/[(x^2-yz)^2 - (y^2-xz)(z^2-xy)] = (a^2-bc)/[x (x^3 + y^3 + z^3 - 3xyz)] =>
(a^2-bc)/x = [a^2/(x^2 - yz)^2] * (x^3 + y^3 + z^3 - 3xyz) (2)
Thực hiện tương tự ta cũng có
(b^2-ac)/y = [b^2/(y^2 - xz)^2] * (x^3 + y^3 + z^3 - 3xyz) (3)
(c^2-ab)/z = [c^2/(z^2 - xy)^2] * (x^3 + y^3 + z^3 - 3xyz) (4)
Từ (1),(2),(3),(4) => (a^2-bc)/x = (b^2-ac)/y = (c^2-ab)/z.
Theo đề ra ta có
\(\frac{x}{y}=\frac{z}{x};\frac{y}{x}=\frac{z}{y};\frac{z}{x}=\frac{y}{z}\)
\(\Rightarrow\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{x+y+z}=1\)
\(\Rightarrow\begin{cases}x=y\\y=z\\z=x\end{cases}\)
=> x=y=z (đpcm )
Ta có : \(x^2=yz;y^2=xz;z^2=xy\)
\(\Rightarrow\frac{x}{y}=\frac{z}{x};\frac{x}{y}=\frac{y}{z};\frac{z}{x}=\frac{y}{z}\)
\(\Rightarrow\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\) ( vì trùng nhau )
\(\Rightarrow x=y;y=z;z=x\)
\(\Rightarrow x=y=z\)
Bn tham khảo nha :
https://olm.vn/hoi-dap/detail/55561591911.html
* Bn vô thống kê hỏi đáp của mik xem thì link mới hoạt động *
~ Hok tốt ~
#Gumball
Ta có: \(z^2=2\left(xz+yz-xy\right)=2xz+2yz-2xy\)
Xét:
\(x^2+\left(x-z\right)^2=x^2+z^2-z^2+\left(x-z\right)^2\)\(=\left(x-z\right)^2+2xz-\left(2xz+2yz-2xy\right)+\left(x-z\right)^2\)
\(=\left(x-z\right)^2+2xy-2yz+\left(x-z\right)^2=\left(x-z\right)^2+2y\left(x-z\right)+\left(x-z\right)^2\)
\(=\left(x-z\right)\left(x-z+2y+x-z\right)=\left(x-z\right)\left(2x+2y-2z\right)\) (1)
Xét:
\(y^2+\left(y-z\right)^2=y^2+z^2-z^2+\left(y-z\right)^2\)\(=\left(y-z\right)^2+2yz-\left(2xz+2yz-2xy\right)\)
\(=\left(y-z\right)^2+2xy-2xz+\left(y-z\right)^2=\left(y-z\right)^2+2x\left(y-z\right)+\left(y-z\right)^2\)
\(=\left(y-z\right)\left(y-z+2x+y-z\right)=\left(y-z\right)\left(2x+2y-2z\right)\) (2)
Từ (1); (2) => \(\frac{x^2+\left(x-z\right)^2}{y^2+\left(y-z\right)^2}=\frac{\left(x-z\right)\left(2x+2y-2z\right)}{\left(y-z\right)\left(2x+2y-2z\right)}=\frac{x-z}{y-z}\) \(\left(ĐPCM\right)\)
Bài làm:
Dễ thấy a,b,c khác 0
Ta có: \(\frac{xy}{x+y}=\frac{12}{7}\Leftrightarrow\frac{x+y}{xy}=\frac{7}{12}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{7}{12}\) (1)
Tương tự ta tách ra được: \(\frac{1}{y}+\frac{1}{z}=-\frac{1}{6}\) (2) ; \(\frac{1}{z}+\frac{1}{x}=-\frac{1}{4}\) (3)
Cộng vế (1);(2) và (3) lại ta được:
\(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{6}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{12}\) (4)
Cộng vế (1) và (2) lại ta được: \(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}=\frac{5}{12}\)
Thay (4) vào ta được: \(\frac{1}{y}+\frac{1}{12}=\frac{5}{12}\Leftrightarrow\frac{1}{y}=\frac{1}{3}\Rightarrow y=3\)
Từ đó ta dễ dàng tính được: \(\hept{\begin{cases}\frac{1}{x}=\frac{7}{12}-\frac{1}{3}=\frac{1}{4}\\\frac{1}{z}=-\frac{1}{6}-\frac{1}{3}=-\frac{1}{2}\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\z=-2\end{cases}}\)
Vậy \(\left(x;y;z\right)=\left(4;3;-2\right)\)
Ta có : y2 = xy \(\Rightarrow\)x = y ( 1 )
x2 = yz hay x2 = xz \(\Rightarrow\)x = z ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)x = y = z
Vậy x = y = z