Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3x^2}{2}+y^2+z^2+yz=1\)
\(\Leftrightarrow\dfrac{3}{2}x^2+\left(y+\dfrac{z}{2}\right)^2+\dfrac{3z^2}{4}=1\)
Áp dụng BĐT Bunhiacopxki:
\(\left(\dfrac{2}{3}+1+\dfrac{1}{3}\right)\left(\dfrac{3}{2}x^2+\left(y+\dfrac{z}{2}\right)^2+\dfrac{3z^2}{4}\right)\ge\left(\sqrt{\dfrac{2}{3}.\dfrac{3}{2}x^2}+\sqrt{1.\left(y+\dfrac{z}{2}\right)^2}+\sqrt{\dfrac{1}{3}.\dfrac{3z^2}{4}}\right)^2\)
\(\Leftrightarrow2.1\ge\left(x+y+\dfrac{z}{2}+\dfrac{z}{2}\right)^2=\left(x+y+z\right)^2\)
\(\Rightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)
\(\frac{3x^2}{2}+y^2+z^2+yz=1\)
\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)
\(\Rightarrow\left(x+y+z\right)^2\le2\)
\(\Leftrightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)
⇔3x2+2y2+2z2+2yz=2⇔3x2+2y2+2z2+2yz=2
⇒2≥3x2+2y2+2z2+y2+z2⇒2≥3x2+2y2+2z2+y2+z2
⇔2≥3(x2+y2+z2)⇔2≥3(x2+y2+z2)
Có: (x+y+z)2≤3(x2+y2+z2)≤2(x+y+z)2≤3(x2+y2+z2)≤2
⇒⇒A2≤2A2≤2 ⇔A∈[−√2;√2]⇔A∈[−2;2]
minA=-1⇔⇔{x+y+z=−√2x=y=z{x+y+z=−2x=y=z ⇒x=y=z=−√23⇒x=y=z=−23
maxA=1⇔{x+y+z=√2x=y=z⇔{x+y+z=2x=y=z ⇒x=y=z=√23
Bài 2 bạn tham khảo cách làm của cô Linh Chi tại đây nhé :
Câu hỏi của nguyen trung nghia - Toán lớp 8 - Học toán với OnlineMath
Học tốt và cá tháng tư đừng để bị troll nha !!!!!!!!!!!
B1:
\(M=\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(=2+\frac{x}{y}+\frac{y}{x}\)
Nhờ dự đoán được điểm rơi,ta chứng minh bất đẳng thức sau luôn đúng:\(\frac{x}{y}+\frac{y}{x}\le\frac{5}{2}\)
Thật vậy !!!
\(\frac{x}{y}+\frac{y}{x}\le\frac{5}{2}\)
\(\Leftrightarrow\left(\frac{x}{y}-\frac{1}{2}\right)+\left(\frac{y}{x}-2\right)\le0\)
\(\Leftrightarrow\frac{2x-y}{2y}+\frac{y-2x}{x}\le0\)
\(\Leftrightarrow\frac{2x^2-xy+2y^2-4xy}{2xy}\le0\)
\(\Leftrightarrow2x^2-5xy+2y^2\le0\)
\(\Leftrightarrow\left(x-2y\right)\left(2x-y\right)\le0\) ( đúng )
Dấu "=" xảy ra tại \(x=1;y=2\)
Vậy \(M_{max}=\frac{9}{2}\Leftrightarrow x=1;y=2\)
Ta đã từng chứng minh \(x^2+y^2+z^2\ge xy+yz+xz\)
CM như sau: Nhân hai vế cho 2 được \(2x^2+2y^2+2z^2\ge2\left(xy+yz+xz\right)\)
\(\Leftrightarrow x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (luôn đúng)
Áp dụng ta có: \(x^2+y^2+z^2\ge xy+yz+xz=12\)
\(\Rightarrow\left(x^2+y^2+z^2\right)^2\ge12^2=144\)
\(\Rightarrow x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+z^2x^2\right)\ge144\) (1)
Mặt khác: \(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\)
\(\Rightarrow\)\(2\left(x^4+y^4+z^4\right)\ge2\left(x^2y^2+y^2z^2+z^2x^2\right)\) (2)
Cộng vế theo vế ta được: \(2\left(x^4+y^4+z^4\right)-2\left(x^2y^2+y^2z^2+z^2x^2\right)+x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+z^2x^2\right)\ge144\)
\(\Leftrightarrow3\left(x^4+y^4+z^4\right)\ge144\)
\(\Leftrightarrow x^4+y^4+z^4\ge48\)
Dấu "=" xảy ra <=> x=y=z=2
Vậy Mmin = 48 <=> x=y=z=2