K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 3 2022

\(\dfrac{3x^2}{2}+y^2+z^2+yz=1\)

\(\Leftrightarrow\dfrac{3}{2}x^2+\left(y+\dfrac{z}{2}\right)^2+\dfrac{3z^2}{4}=1\)

Áp dụng BĐT Bunhiacopxki:

\(\left(\dfrac{2}{3}+1+\dfrac{1}{3}\right)\left(\dfrac{3}{2}x^2+\left(y+\dfrac{z}{2}\right)^2+\dfrac{3z^2}{4}\right)\ge\left(\sqrt{\dfrac{2}{3}.\dfrac{3}{2}x^2}+\sqrt{1.\left(y+\dfrac{z}{2}\right)^2}+\sqrt{\dfrac{1}{3}.\dfrac{3z^2}{4}}\right)^2\)

\(\Leftrightarrow2.1\ge\left(x+y+\dfrac{z}{2}+\dfrac{z}{2}\right)^2=\left(x+y+z\right)^2\)

\(\Rightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)

22 tháng 3 2022

\(\frac{3x^2}{2}+y^2+z^2+yz=1\)

\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)

\(\Rightarrow\left(x+y+z\right)^2\le2\)

\(\Leftrightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)

28 tháng 7 2021

⇔3x2+2y2+2z2+2yz=2⇔3x2+2y2+2z2+2yz=2

⇒2≥3x2+2y2+2z2+y2+z2⇒2≥3x2+2y2+2z2+y2+z2 

⇔2≥3(x2+y2+z2)⇔2≥3(x2+y2+z2)

Có: (x+y+z)2≤3(x2+y2+z2)≤2(x+y+z)2≤3(x2+y2+z2)≤2

⇒⇒A2≤2A2≤2 ⇔A∈[−√2;√2]⇔A∈[−2;2]

minA=-1⇔⇔{x+y+z=−√2x=y=z{x+y+z=−2x=y=z  ⇒x=y=z=−√23⇒x=y=z=−23

maxA=1⇔{x+y+z=√2x=y=z⇔{x+y+z=2x=y=z ⇒x=y=z=√23

1 tháng 4 2020

Bài 2 bạn tham khảo cách làm của cô Linh Chi tại đây nhé :

Câu hỏi của nguyen trung nghia - Toán lớp 8 - Học toán với OnlineMath

Học tốt và cá tháng tư đừng để bị troll nha !!!!!!!!!!!

1 tháng 4 2020

B1:

\(M=\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(=2+\frac{x}{y}+\frac{y}{x}\)

Nhờ dự đoán được điểm rơi,ta chứng minh bất đẳng thức sau luôn đúng:\(\frac{x}{y}+\frac{y}{x}\le\frac{5}{2}\)

Thật vậy !!!

\(\frac{x}{y}+\frac{y}{x}\le\frac{5}{2}\)

\(\Leftrightarrow\left(\frac{x}{y}-\frac{1}{2}\right)+\left(\frac{y}{x}-2\right)\le0\)

\(\Leftrightarrow\frac{2x-y}{2y}+\frac{y-2x}{x}\le0\)

\(\Leftrightarrow\frac{2x^2-xy+2y^2-4xy}{2xy}\le0\)

\(\Leftrightarrow2x^2-5xy+2y^2\le0\)

\(\Leftrightarrow\left(x-2y\right)\left(2x-y\right)\le0\) ( đúng )

Dấu "=" xảy ra tại \(x=1;y=2\)

Vậy \(M_{max}=\frac{9}{2}\Leftrightarrow x=1;y=2\)

6 tháng 1 2019

= - 4600

hok tốt 

~ chanh ~

20 tháng 2 2019

Ta đã từng chứng minh \(x^2+y^2+z^2\ge xy+yz+xz\)

CM như sau: Nhân hai vế cho 2 được \(2x^2+2y^2+2z^2\ge2\left(xy+yz+xz\right)\)

                                      \(\Leftrightarrow x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\ge0\)

                                      \(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (luôn đúng)

Áp dụng ta có: \(x^2+y^2+z^2\ge xy+yz+xz=12\)

          \(\Rightarrow\left(x^2+y^2+z^2\right)^2\ge12^2=144\)

           \(\Rightarrow x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+z^2x^2\right)\ge144\) (1)

Mặt khác:  \(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\)

 \(\Rightarrow\)\(2\left(x^4+y^4+z^4\right)\ge2\left(x^2y^2+y^2z^2+z^2x^2\right)\) (2)

Cộng vế theo vế ta được: \(2\left(x^4+y^4+z^4\right)-2\left(x^2y^2+y^2z^2+z^2x^2\right)+x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+z^2x^2\right)\ge144\)

\(\Leftrightarrow3\left(x^4+y^4+z^4\right)\ge144\)

\(\Leftrightarrow x^4+y^4+z^4\ge48\)

Dấu "=" xảy ra <=> x=y=z=2

Vậy Mmin = 48 <=> x=y=z=2

20 tháng 2 2019

có trong nÂNG CAO PHÁT TRIỂN ĐÓ BẠN