K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(x+y)^3 - 3xy(x+y) + z^3 - 3xyz = 0

(x+y+z) ( (x+y)^2 +z^2 -z(x+y) -3xy) =0

(x+y+z) ( x^2+ 2xy+y^2 +z^2- zx-zy-3xy)=0

(x+y+z) ( x^2+y^2+z^2 -zx-zy -xy)=0

Suy ra x+y+z =0 

x+y = -z

y+z = -x

x+z = -y

B = -16 + (-3) +2038 = 2019

7 tháng 2 2020

Ta có: \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\left(x,y,z\ne0\right)\)

+) x + y + z = 0 \(\Rightarrow B=\frac{-16z}{z}+\frac{-3x}{x}-\frac{-2038y}{y}\)

\(=-16-3+2038=2019\)

+) x = y = z \(\Rightarrow B=\frac{16.2z}{z}+\frac{3.2x}{x}-\frac{2038.2y}{y}\)

\(=32+6-4076=-4038\)

NV
12 tháng 3 2021

\(x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

\(\Leftrightarrow x+y+z=0\Rightarrow\left\{{}\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)

\(B=\dfrac{16.\left(-z\right)}{z}+\dfrac{3.\left(-x\right)}{x}-\dfrac{2019.\left(-y\right)}{y}=2019-19=2000\)

6 tháng 7 2024

GIÁO VIÊN SAO TOÀN SAI HẰNG ĐẲNG THỨC THẾ????

24 tháng 2 2019

m thử sử dụng cái j mà x-y=-(y-z+z-x)