K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
31 tháng 3 2016
Bài này dễ mà bạn! Bạn chỉ cần chứng minh A nằm giữa 2 số tự nhiên liên tiếp là được !
AH
Akai Haruma
Giáo viên
30 tháng 4 2023
Lời giải:
Ta có:
$A> \frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1(1)$
Mặt khác:
$\frac{x}{x+y}-\frac{x+z}{x+y+z}=\frac{-yz}{(x+y)(x+y+z)}<0$ với mọi $x,y,z$ nguyên dương.
$\Rightarrow \frac{x}{x+y}< \frac{x+z}{x+y+z}$
Hoàn toàn tương tự:
$\frac{y}{y+z}< \frac{x+y}{x+y+z}$
$\frac{z}{z+x}< \frac{z+y}{z+y+x}$
Cộng các BĐT trên lại ta có:
$A< \frac{x+y}{x+y+z}+\frac{y+z}{x+y+z}+\frac{z+x}{x+y+z}=2(2)$
Từ $(1); (2)\Rightarrow 1< A< 2$ nên $A$ không thể có giá trị nguyên.
* C/m : A > 1
Ta có :
\(\frac{x}{x+y}>\frac{x}{x+y+z}\)( vì x > 0 ; 0 < x + y < x + y + z )
\(\frac{y}{y+z}>\frac{y}{x+y+z}\)( vì y > 0 ; 0 < y + z < x + y + z )
\(\frac{z}{z+x}>\frac{z}{x+y+z}\)( vì z > 0 ; 0 < z + x < x + y + z )
\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\)
\(\Rightarrow A>\frac{x+y+z}{x+y+z}\Rightarrow A>1\)
* C/m : A < 2
Áp dụng BĐT : \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+n}{b+n}\) ( a,b,n \(\in\)N* )
Với x,y,z \(\in\)N* ta có :
- Vì : 0 < x < x + y \(\Rightarrow\frac{x}{x+y}< 1\Rightarrow\frac{x}{x+y}< \frac{x+z}{x+y+z}\)
- Vì : 0 < y < y + z \(\Rightarrow\frac{y}{y+z}< 1\Rightarrow\frac{y}{y+z}< \frac{x+y}{x+y+z}\)
- Vì : 0 < z < z + x \(\Rightarrow\frac{z}{z+x}< 1\Rightarrow\frac{z}{z+x}< \frac{z+y}{x+y+z}\)
\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< \frac{x+z}{x+y+z}+\frac{x+y}{x+y+z}+\frac{y+z}{x+y+z}\)
\(\Rightarrow A< \frac{x+z+x+y+y+z}{x+y+z}\Rightarrow A< \frac{2\left(x+y+z\right)}{x+y+z}\Rightarrow A< 2\)
Mà A < 1 => 1 < A < 2 ; 1 và 2 là hai số nguyên liên tiếp
=> A không có giá trị nguyên
Vậy ...
Ta có: \(\frac{x}{x+y}>\frac{x}{x+y+z}\)
\(\frac{y}{y+z}>\frac{y}{x+y+z}\)
\(\frac{z}{z+x}>\frac{z}{x+y+z}\)
\(\Rightarrow A>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)(1)
Lại có: \(\frac{x}{x+y}< \frac{x+y}{x+y+z}\)
\(\frac{y}{y+z}< \frac{y+z}{x+y+z}\)
\(\frac{z}{z+x}< \frac{z+x}{x+y+z}\)
\(\Rightarrow A< \frac{x+y}{x+y+z}+\frac{y+z}{x+y+z}+\frac{z+x}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)(2)
Từ (1) và (2) suy ra 1 < A < 2
Vậy A không phải là số nguyên