Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có bất đẳng thức: với \(x,y>0\)
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Dấu \(=\)khi \(x=y\).
Áp dụng bất đẳng thức trên ta được:
\(\frac{1}{2x+3y+3z}\le\frac{1}{4}\left(\frac{1}{2x+y+z}+\frac{1}{2y+2z}\right)\le\frac{1}{4}\left[\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{1}{2}\left(\frac{1}{y+z}\right)\right]\)
\(=\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{1}{8}\left(\frac{1}{y+z}\right)\)
Tương tự với \(\frac{1}{3x+2y+3z},\frac{1}{3x+3y+2z}\)sau đó cộng lại vế với vế ta được:
\(P\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=3\)
Dấu \(=\)xảy ra khi \(x=y=z=\frac{1}{8}\)
\(\frac{1}{x^4}+\frac{1}{y^4}=\frac{x^2}{x^6}+\frac{1}{y^4}\ge\frac{\left(x+1\right)^2}{x^6+y^4}\ge\frac{4x}{x^6+y^4}\)
tương tự
\(\frac{1}{y^4}+\frac{1}{z^4}\ge\frac{4y}{y^6+z^4}\);
\(\frac{1}{z^4}+\frac{1}{x^4}\ge\frac{4z}{z^6+x^4}\);
cộng vế với vế => đpcm
Dấu "=" xảy ra <=> x=y=z=1
\(F\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)+\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}\right)\)
\(F\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)
Dấu "=" xảy ra khi \(x=y=z=\frac{3}{4}\)
Giải:
Ta có: x, y, z >0
Áp dụng BĐT Cô si ta có:
\(\left(x+y\right)\ge2\sqrt{xy}\) và \(\left(\frac{1}{x}+\frac{1}{y}\right)\ge2\sqrt{\frac{1}{xy}}\)
=> \(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge2\sqrt{xy}.2\sqrt{\frac{1}{xy}}=4\)
<=> \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\frac{1}{x+y}\le4\left(\frac{1}{x}+\frac{1}{y}\right)\) (*)
Áp dụng (*) ta có:
\(\frac{1}{2x+y+z}=\frac{1}{x+y+x+z}=\frac{1}{\left(x+y\right)+\left(x+z\right)}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}+\frac{1}{z}\right)\) (1)
\(\frac{1}{x+2y+z}=\frac{1}{x+y+y+z}=\frac{1}{\left(x+y\right)+\left(y+z\right)}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)\) (2)
\(\frac{1}{x+y+2z}=\frac{1}{x+z+y+z}=\frac{1}{\left(x+z\right)+\left(y+z\right)}\le\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{z}+\frac{1}{y}+\frac{1}{z}\right)\) (3)
Cộng 2 vế của (1), (2), (3) ta có
\(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\) (đpcm)
Bài này mà cũng cho vào chh làm gì vậy . Bài này t làm rồi nhé.
Câu hỏi của Mai Linh - Toán lớp 8 | Học trực tuyến
Áp dụng BĐT AM - GM ta có:
\(16F=\frac{\left(1+1+1+1\right)^2}{x+x+y+z}+\frac{\left(1+1+1+1\right)^2}{x+y+y+z}+\frac{\left(1+1+1+1\right)^2}{x+y+z+z}\)
\(\le\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}\right)\)
\(=4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=16\)
\(\Leftrightarrow F\le1\)
Đẳng thức xảy ra khi và chỉ khi x = y = z = \(\frac{3}{4}\)
Vậy Max F = 1 \(\Leftrightarrow x=y=z=\frac{3}{4}\)
Đặt \(\left(x;y;z\right)=\left(2a^2;2b^2;2c^2\right)\Rightarrow abc=1\)
\(VT=\frac{1}{4a^2+2b^2+6}+\frac{1}{4b^2+2c^2+6}+\frac{1}{4c^2+2a^2+6}\)
\(VT=\frac{1}{\left(2a^2+2\right)+\left(2a^2+2b^2\right)+4}+\frac{1}{\left(2b^2+2\right)+\left(2b^2+2c^2\right)+4}+\frac{1}{\left(2c^2+2\right)+\left(2c^2+2a^2\right)+4}\)
\(VT\le\frac{1}{4a+4ab+4}+\frac{1}{4b+4bc+4}+\frac{1}{4c+4ca+4}=\frac{1}{4}\)
Dấu "=" xảy ra khi \(a=b=c=1\) hay \(x=y=z=2\)
Lời giải:
BĐT \(\Leftrightarrow (9+x^2y^2+y^2z^2+z^2x^2)(xy+yz+xz)\geq 36xyz(*)\)
Thật vậy, áp dụng BĐT AM-GM:
\(9+x^2y^2+y^2z^2+z^2x^2=1+1+...+1+x^2y^2+y^2z^2+z^2x^2\geq 12\sqrt[12]{x^4y^4z^4}\)
\(xy+yz+xz\geq 3\sqrt[3]{x^2y^2z^2}\)
Nhân theo vế ta có BĐT $(*)$ luôn đúng
Do đó ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=1$
chtt
Nhanh to cho card 20