Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với x,y,z khác 0 ta có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0=>\frac{yz+xz+xy}{xyz}=0=>yz+xz+xy=0\)
Ta luôn có nếu a+b+c=0 thì a3+b3+c3=3abc
Vì xy+yz+zx=0 nên x3y3+y3z3+z3x3=3x2y2z2
Với x3y3+y3z3+z3x3=3x2y2z2 ta có:
\(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=\frac{y^3z^3+x^3z^3+x^3y^3}{x^2y^2z^2}=\frac{3x^2y^2z^2}{x^2y^2z^2}=3\)
Vậy ....
\(x+y+z=3\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=9\Leftrightarrow xy+yz+zx=0\left(\text{vì:}x^2+y^2+z^2=9\right)\)
\(xy+yz+zx=0\Rightarrow xy=-yz-zx;yz=-xy-xz;xz=-xy-yz\)
\(P=\frac{-x\left(y+z\right)}{x^2}+\frac{-y\left(z+x\right)}{y^2}+\frac{-z\left(x+y\right)}{z}-4=\frac{y+z}{-x}+\frac{z+y}{-y}+\frac{x+y}{-z}-4\)
\(P=\frac{3}{x}+\frac{3}{y}+\frac{3}{z}-1=\frac{3yz+3xz+3xy}{xyz}-1=0-1=-1\)
1/x + 1/y + 1/z = 0 suy ra xy + yz + zx = 0
\(N=\frac{\left(yz\right)^3+\left(zx\right)^3+\left(xy\right)^3}{x^2y^2z^2}\)
Nếu a + b +c = 0 thì
a ^3 + b ^3 + c^ 3 = 3abc
thật vậy a ^3 + b ^3 + c^ 3 = ( a + b + c) ^3 - 3(a + b)(b + c)(c + a) = - 3(-c)(-a)(-b) = 3abc
Do đó 3.x^2.y^2.z^2/x^2.y^2.z^2=3
Vì 1/x + 1/y + 1/z = 0 nên lần lượt nhân vs x; y; z ta có:
1 + x/y + x/z = 0 (1)
1 + y/z + y/x = 0 (2)
1 + z/x + z/y = 0 (3)
Từ (1); (2); (3) suy ra : x/y + y/z + z/x + x/z + y/x + z/y = - 3 (*)
Mặt khác : 1/x + 1/y + 1/z = 0 nên quy đồng lên ta có:
(xy + yz + zx)/xyz = 0 hay xy + yz + zx = 0
Hay : (1/x^2 + 1/y^2 + 1/z^2).(xy + yz + zx) = 0
khai triển ra :
yz/x^2 + zx/y^2 + xy/z^2 + x/y + y/z + z/x + x/z + y/x + z/y = 0
Vậy : yz/x^2 + zx/y^2 + xy/z^2 = - (x/y + y/z + z/x + x/z + y/x + z/y) = 3 (theo (*))
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{z}=0\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{-1}{z}\)
\(\Rightarrow(\frac{1}{x}+\frac{1}{y})^3=(\frac{-1}{z})^3\)
\(\Rightarrow\frac{1}{x^3}+3\frac{1}{x^2}\frac{1}{y}+3\frac{1}{x}\frac{1}{y^2}+\frac{1}{y^3}=\frac{-1}{z^3}\)
\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=-3\cdot\frac{1}{x}\frac{1}{y}(\frac{1}{x}+\frac{1}{y})\)
\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=-3\cdot\frac{1}{x}\frac{1}{y}\frac{1}{z}\)
\(\Rightarrow(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3})xyz=3\frac{1}{x}\frac{1}{y}\frac{1}{z}\cdot xyz\)
\(\Rightarrow\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=3\)