K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2018

kkgkirtgkjssykjhskfsrlhklruwo8tiyfieusykdkwirkuiufysoiiyi

11 tháng 10 2018

Tích trên có số thừa số:

(2012 - 2) : 10 + 1 = 202 (thừa số)

Cứ 4 thừa số thì đem lại cho ta tích có tận cùng là 6.

Mà 202 : 4 = 50 (dư 2)

Khi đó:

(2 x 12 x 22 x 32) x ... x (1962 x 1972 x 1982 x 1992) x 2002 x 2012

Vậy tận cùng của tích là: 6x2x2 có tận cùng là 4.

Câu 2:

Gọi ba số phải tìm là x,y,z 
Ta có: x + y + z = 321,95 và 3x = 4y = 5z 
Từ 3x = 4y = 5z 
Cho ta:
x(13)=y(14)=z(15)=(x+y+z)(13+14...)x(13)=y(14)=z(15)=(x+y+z)(13+14...)(dãy tỉ số bằng nhau)
Do đó: x(13)=411→x=137x(13)=411→x=137
y = 102,75 
z = 82,2 
Vậy, .....

Xét \(x+y+z=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+z=-x\\z+x=-y\\x+y=-z\end{matrix}\right.\)

\(\Rightarrow A=\left(2-1\right)\left(2-1\right)\left(2-1\right)=1\)

Xét \(x+y+z\ne0\) thì ta có:

\(\dfrac{x}{y+z+3x}=\dfrac{y}{z+x+3y}=\dfrac{z}{x+y+3z}=\dfrac{x+y+z}{5x+5y+5z}=\dfrac{x+y+z}{5\left(x+y+z\right)}=\dfrac{1}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}5x=y+z+3x\\5y=z+x+3y\\5z=x+y+3z\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=y+z\\2y=z+x\\2z=x+y\end{matrix}\right.\)

\(\Rightarrow A=\left(2+2\right)\left(2+2\right)\left(2+2\right)=64\)

Vậy \(\left[{}\begin{matrix}A=1\\A=64\end{matrix}\right.\)

Nếu bị lỗi thì bạn có thể xem đây nhé:

undefined

9 tháng 1 2020

Ta có : \(\frac{x+y+z-3t}{t}=\frac{y+z+t-3x}{x}=\frac{z+t+x-3y}{y}=\frac{t+x+y-3z}{z}\)

=> \(\frac{x+y+z-3t}{t}+4=\frac{y+z+t-3x}{x}+4=\frac{x+z+t-3y}{y}+4=\frac{x+y+t-3z}{z}+4\)

=> \(\frac{x+y+z+t}{t}=\frac{x+y+z+t}{x}=\frac{x+y+z+t}{y}=\frac{x+y+z+t}{z}\)

=> \(\frac{2012}{x}=\frac{2012}{y}=\frac{2012}{z}=\frac{2012}{t}=\frac{2012+2012+2012+2012}{x+y+z+t}=\frac{2012.4}{2012}=4\)

=> x = y = z = t = 403

Khi đó A = x + 2y - 3z + t

              = x + 2x - 3x + x

             = x = 403

Vậy x = 403 

18 tháng 2 2021

Ta có \(\frac{x+y+3z}{7}=\frac{y+z+3x}{8}=\frac{z+x+3y}{10}=\frac{x+y+3z+y+z+3x+z+x+3y}{7+8+10}\)

                                                                                              \(=\frac{5\left(x+y+z\right)}{25}=\frac{x+y+z}{5}=\frac{5}{x+y+z}\)(1)

Từ (1) => (x + y + z)2 = 25 

=> \(\orbr{\begin{cases}x+y+z=5\\x+y+z=-5\end{cases}}\)

Khi x + y + z = 5 => \(\frac{5}{x+y+z}=1\)

=> \(\hept{\begin{cases}z+x+3y=10\\y+z+3x=8\\x+y+3z=7\end{cases}}\Rightarrow\hept{\begin{cases}x+y+z+2y=10\\x+y+z+2x=8\\x+y+z+2z=7\end{cases}}\Rightarrow\hept{\begin{cases}5+2y=10\\5+2x=8\\5+2z=7\end{cases}}\Rightarrow\hept{\begin{cases}y=2,5\\x=1,5\\z=1\end{cases}}\)(tm)

Khi x + y + z = -5 => \(\frac{5}{x+y+z}=-1\)

=> \(\hept{\begin{cases}x+y+3z=-7\\y+z+3x=-8\\z+x+3y=-10\end{cases}}\Rightarrow\hept{\begin{cases}x+y+z+2z=-7\\x+y+z+2x=-8\\x+y+z+2y=-10\end{cases}}\Rightarrow\hept{\begin{cases}-5+2z=-7\\-5+2x=-8\\-5+2y=-10\end{cases}}\Rightarrow\hept{\begin{cases}z=-1\\x=-1,5\\y=-2,5\end{cases}}\)(tm)

Vậy các cặp (x;y;z) thỏa mãn là (1,5;2,5;1) ; (-1,5;-2,5;-1) 

24 tháng 11 2021

\(TH_1:x+y+z=0\Rightarrow\left\{{}\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\\ \Rightarrow Q=\dfrac{-z}{z}+\dfrac{-x}{x}+\dfrac{-y}{y}=-3\\ TH_2:x+y+z\ne0\\ \Rightarrow\dfrac{3x-2y+z}{x}=\dfrac{3y-2z+x}{y}=\dfrac{3z-2x+y}{z}=\dfrac{2x+2y+2z}{x+y+z}=2\\ \Rightarrow\left\{{}\begin{matrix}3x-2y+z=x\\3y-2z+x=y\\3z-2x+y=z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x-2y=-z\\2y-2z=-x\\2z-2x=-y\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x-y=-\dfrac{z}{2}\\y-z=-\dfrac{x}{2}\\z-x=-\dfrac{y}{2}\end{matrix}\right.\)

\(\Rightarrow Q=-\dfrac{z}{2}:z-\dfrac{x}{2}:x-\dfrac{y}{2}:y=-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}=-\dfrac{3}{2}\)

17 tháng 3 2019

Giúp mình nha mk đg cần gấp

17 tháng 3 2019

Làm rồi nhưng olm không hiện.Hướng dẫn thôi nha.

Cộng 1 vào mỗi vế của giả thiết.Rồi chia tất cả các vế của giả thiết cho x + y + z +t khác 0.

Ta sẽ được: \(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}=\frac{1}{t}\Rightarrow x=y=z=t\)

Đến đây thay vào M: y,z,t bởi x ta sẽ thu được kết quả.

1 tháng 1 2021

mong  mn help khocroi

1 tháng 1 2021

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{x+3y-z}{z}=\dfrac{y+3z-x}{x}=\dfrac{z+3x-y}{y}=\dfrac{x+3y-z+y+3z-x+z+3x-y}{x+y+z}=\dfrac{3(x+y+z)-(x+y+z)}{x+y+z}=\dfrac{2(x+y+z)}{x+y+z}=2\)

\(\Rightarrow x=y=z=0\)

\(\Rightarrow \) P không xác định. (?)

AH
Akai Haruma
Giáo viên
22 tháng 12 2021

Lời giải:
$2(x+y)=3(y+z)=4(x+z)$

$\Rightarrow \frac{x+y}{6}=\frac{y+z}{4}=\frac{x+z}{3}$ (chia cả 3 vế cho $12$)

Đặt giá trị trên là $t$

$\Rightarrow x+y=6t; y+z=4t; z+x=3t$

$\Rightarrow x+y+z=(6t+4t+3t):2=6,5t$

$x=6,5t-4t=2,5t; y=6,5t-3t=3,5t; z=6,5t-6t=0,5t$. Khi đó:
$P=\frac{2,5t}{3,5t}+\frac{3,5t}{0,5t}+\frac{0,5t}{2,5t}$

$=\frac{2,5}{3,5}+\frac{3,5}{0,5}+\frac{0,5}{2,5}=\frac{277}{35}$