K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2019

ta có x^2 + 2y^2 +z^2 -2xy -2y -4z +5 =0

=> (x^2 - 2xy +y^2) + (y^2 -2y +1) + (z^2 -4z +4) =0

=> (x-y)^2 + (y-1)^2 +(z-2)^2 =0

=> x=y , y=1 , z=2 

=> A= (1-1)^2018 + (1-1)^2019 + ( 2-1)^2020 => A= 1

nghĩ thế !

NV
26 tháng 12 2022

\(A=\dfrac{x}{xy+x+1}+\dfrac{xy}{x.yz+xy+x}+\dfrac{xy.z}{xy.xz+xy.z+xy}\)

\(=\dfrac{x}{xy+x+1}+\dfrac{xy}{1+xy+x}+\dfrac{1}{x+1+xy}\)

\(=\dfrac{x+xy+1}{xy+x+1}=1\)

 

1 tháng 1 2016

3x²y²z² = x³y³ y³z³ z³x³ 
(3x²y²z²) / (x³y³ y³z³ z³x³) = 1
3.[(x²y²z²) / (x³y³ y³z³ z³x³)] = 1
(x²y²z²) / (x³y³ y³z³ z³x³) = 1/3
(x²y²z²) / (x³y³) (x²y²z²) / (y³z³) (x²y²z²) / (z³x³) = 1/3
z²/(xy) x/(yz) y²/(zx) = 1/3
Vậy x²/(yz) y²/(xz) z²/(xy) = 1/3

20 tháng 3 2017

1)

\(A=\left(x-y+1\right)^2+\left(y-2\right)^2+5\ge5\)

GTNN A=5 khi y=2 và x=1

2)

\(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)

\(A=\dfrac{x^3+y^3+z^3}{xyz}=\dfrac{3xyz}{xyz}=3\)