Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM: $VP\leq \frac{25}{yz+zx+xy+4}$
Cần c/m: $\frac{x+1}{y+1}+\frac{y+1}{z+1}+\frac{z+1}{x+1}$\leq \frac{25}{yz+zx+xy+4}$
$\Leftrightarrow (yz+zx+xy)(xy^{2}+yz^{2}+zx^{2})+4(xy^{2}+yz^{2}+zx^{2})\leq 25xyz+4(yz+zx+xy)+16$
BĐT trên sẽ được c/m nếu c/m được: $xy^{2}+yz^{2}+zx^{2}\leq 4$.
KMTTQ, g/sử y nằm giữa x và z. $\Rightarrow x(x-y)(y-z)\geq 0$
$\Leftrightarrow xy^{2}+yz^{2}+zx^{2}\leq y(x^{2}+xz+z^{2})\leq y(x+z)^{2}$
Đến đây áp dụng BĐT AM-GM:
$y(x+z)^{2}=4.y.(\frac{x+z}{2})(\frac{x+z}{2})\leq \frac{4(y+\frac{x+z}{2}+\frac{x+z}{2})^{3}}{27}=\frac{4(x+y+z)^{3}}{27}=4$ (đpcm)
Dấu bằng xảy ra khi, chẳng hạn $x=0;y=1;z=2$
Áp dụng BĐT AM-GM và BĐT Rearrangement ta có:
\(VT=\frac{x+1}{y+1}+\frac{y+1}{z+1}+\frac{z+1}{x+1}\)
\(=\frac{\left(x+y+z\right)^2+3\left(x+y+z\right)+xy^2+yz^2+zx^2+3}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)\(\le\frac{21+y\left(x+z\right)^2}{3\sqrt[3]{4\left(xy+yz+xz\right)}}\le\frac{21+\frac{\left(\frac{2\left(x+y+z\right)}{3}\right)^3}{2}}{3\sqrt[3]{4\left(xy+yz+zx\right)}}=\frac{21+4}{3\sqrt[3]{4\left(xy+yz+zx\right)}}=\frac{25}{3\sqrt[3]{4\left(xy+yz+zx\right)}}\)
Dấu "=" xảy ra <=> (x;y;z)=(2;1;0) và hoán vị của nó
(*) Xét BĐT \(\sqrt{\left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}+\sqrt{bd}\) với a ; b; c ;d > 0
BĐT <=> \(\left(a+b\right)\left(c+d\right)\ge ac+bd+2\sqrt{abcd}\)
<=> \(ad-2\sqrt{abcd}+bc\ge0\Leftrightarrow\left(\sqrt{ad}-\sqrt{bc}\right)^2\ge0\)
Dễ thấy BĐT cuối luôn đúng
Dấu '' = '' của BĐT xảy ra khi ad = bc <=> \(\frac{a}{c}=\frac{b}{d}\)
(*) ÁP dụng BĐT ta có
\(\sqrt{3x+yz}=\sqrt{\left(x+y+z\right)x+yz}=\sqrt{\left(x+z\right)\left(y+x\right)}\ge\sqrt{xy}+\sqrt{xz}\)
=> \(\frac{x}{x+\sqrt{3x+yz}}\le\frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Dấu '' = '' của BĐT xảy ra khi x/y = z/x
(*) CMTT với hai cái còn lại
Cộng Ba vế BĐT ta đc ĐPCM
Dấu '' = '' của BĐT xảy ra khi x = y = z = 1
Theo như câu đưới thì
\(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge x^2+y^2+z^2\ge xy+yz+xz\)(bất đẳng thức cosi)
ta caàn chứng minh bđt
\(\frac{x}{x+yz}+\frac{y}{y+zx}\ge\frac{x}{x+xz}+\frac{y}{y+yz}=\frac{1}{1+z}+\frac{1}{1+z}=\frac{2}{1+z}\)
tương tự + vào, dùng svác sơ
Ta đặt: \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c;\frac{1}{t}=d\) ( a, b, c, d >0 )
Khi đó ta cần chứng minh:
\(\frac{a^3}{\frac{1}{bc}+\frac{1}{cd}+\frac{1}{db}}+\frac{b^3}{\frac{1}{ac}+\frac{1}{cd}+\frac{1}{da}}+\frac{c^3}{\frac{1}{ab}+\frac{1}{bd}+\frac{1}{da}}+\frac{d^3}{\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}}\ge\frac{1}{3}\left(a+b+c+d\right)\)
\(VT=\frac{a^3}{\frac{b+c+d}{bcd}}+\frac{b^3}{\frac{a+c+d}{acd}}+\frac{c^3}{\frac{a+b+d}{abd}}+\frac{d^3}{\frac{a+b+c}{abc}}\)
\(=\frac{a^3}{\frac{a\left(b+c+d\right)}{abcd}}+\frac{b^3}{\frac{b\left(a+c+d\right)}{abcd}}+\frac{c^3}{\frac{c\left(a+b+d\right)}{abcd}}+\frac{d^3}{\frac{d\left(a+b+c\right)}{abcd}}\)
\(=\frac{a^2}{b+c+d}+\frac{b^2}{a+c+d}+\frac{c^2}{a+b+d}+\frac{d^2}{a+b+c}\)
\(\ge\frac{\left(a+b+c+d\right)^2}{3\left(a+b+c+d\right)}=\frac{a+b+c+d}{3}=VP\)
Vậy ta đã chứng minh được
\(\frac{a^3}{\frac{1}{bc}+\frac{1}{cd}+\frac{1}{db}}+\frac{b^3}{\frac{1}{ac}+\frac{1}{cd}+\frac{1}{da}}+\frac{c^3}{\frac{1}{ab}+\frac{1}{bd}+\frac{1}{da}}+\frac{d^3}{\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}}\ge\frac{1}{3}\left(a+b+c+d\right)\)
Dấu "=" xảy ra <=> a = b = c = d
Vậy :
\(\frac{1}{x^3\left(yz+zt+ty\right)}+\frac{1}{y^3\left(xz+zt+tx\right)}+\frac{1}{z^3\left(xy+yt+tx\right)}+\frac{1}{t^3\left(xy+yz+zx\right)}\ge\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)\)
Dấu "=" xảy ra <=> x = y = z = t = 1
Ta có \(A=\frac{x^4}{x^3+x^2y+xy^2}+...\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^3+y^3+z^3+xy^2+yz^2+zx^2+x^2y+y^2z+z^2x}\)
=> \(A\ge\frac{\left(x^2+y^2+z^2\right)^2}{\left(x^2+y^2+z^2\right)\left(x+y+z\right)}=\frac{x^2+y^2+z^2}{x+y+z}\ge\frac{x+y+z}{3}\left(ĐPCM\right)\)
dấu = xảy ra <=> x=y=z>=0
Đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)
Theo giả thiết,ta có: \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{cd}=\frac{3}{abc}\)
Nhân hai vế với abc: \(a+b+c=3\) tức là \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
Lại có:\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{xyz}\)
Ta cần c/m: \(A\ge\frac{3}{2}\)
Do x,y,z > 0 áp dụng BĐT Cô si: \(x^3+y^3+z^3\ge3xyz=xy+yz+zx\)
Áp dụng BĐT Cô si: \(A\ge3\sqrt[3]{\frac{x^3y^3z^3}{\left(z+x^2\right)\left(x+y^2\right)\left(y+z^2\right)}}\)
\(=3xyz.\frac{1}{\sqrt[3]{\left(z+x^2\right)\left(x+y^2\right)\left(y+z^2\right)}}\)\(\ge3xyz.\frac{xy+yz+zx}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\)
\(=\frac{3\left(x^2y^2z+xy^2z^2+x^2yz^2\right)}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\ge\frac{3x^2y^2z^2}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\)
\(=\frac{3x^2y^2z^2}{\left(x+y+z\right)+\left(x+y+z\right)^2-2\left(xy+yz+zx\right)}\)
\(=\frac{3x^2y^2z^2}{\left(x+y+z\right)\left(x+y+z+1\right)-6xyz}\)
\(=\frac{3x^2y^2z^2}{xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left[xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+1\right]-6xyz}\)
\(=\frac{3x^2y^2z^2}{3xyz\left[3xyz+1\right]-6xyz}=\frac{3x^2y^2z^2}{9x^2y^2z^2-3xyz}\)
Đặt \(B=\frac{1}{A}=\frac{9x^2y^2z^2-3xyz}{3x^2y^2z^2}\)
Ta sẽ c/m: \(B\ge\frac{2}{3}\).Thật vậy,ta có:
\(B=\frac{1}{A}=\frac{9x^2y^2z^2-3xyz}{3x^2y^2z^2}=3-\frac{3}{3xyz}\)\(=3-\frac{1}{xyz}\ge0\)
Suy ra \(A\ge0?!?\) có gì đó sai sai.Ai biết chỉ giùm
Nghĩ mãi mới ra -.- Để ý cái số mũ 3 trên tử khó mà dùng trực tiếp Cô-si hoặc Bunhia nên phải tách nó ra
Ta có: \(\frac{x^3}{x^2+z}=\frac{x^3+xz}{x^2+z}-\frac{xz}{x^2+z}=x-\frac{xz}{x^2+z}\)
\(\ge x-\frac{xz}{2x\sqrt{z}}\)(Cô-si)
\(=x-\frac{\sqrt{z}}{2}\)
\(\ge x-\frac{z+1}{4}\)(Dùng bđt \(\sqrt{z}\le\frac{z+1}{2}\))
Tương tự \(\frac{y^3}{y^2+z}\ge y-\frac{x+1}{4}\)
\(\frac{z^3}{z^2+y}\ge z-\frac{y+1}{4}\)
Cộng từng vế của các bđt trên lại được
\(A\ge x+y+z-\frac{x+y+z+3}{4}=\frac{3x+3y+3z-3}{4}\)
\(=\frac{3\left(x+y+z\right)}{4}-\frac{3}{4}\)
Từ điều kiện \(xy+yz+zx=3xyz\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(a,b,c>0\right)\)được
\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
\(\Rightarrow x+y+z\ge3\)
Quay trở lại với A
\(A\ge\frac{3\left(x+y+z\right)}{4}-\frac{3}{4}\ge\frac{3.3}{4}-\frac{3}{4}=\frac{3}{2}=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)(Do \(3=\frac{1}{x}+\frac{1}{y}=\frac{1}{z}\))
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y=z\\xy+yz+zx=3\end{cases}\Leftrightarrow x=y=z=1}\)
Vậy .............
\(Q=\Sigma\frac{x^4}{x^2+\sqrt{xy.zx}}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+xy+yz+zx}\ge\frac{x^2+y^2+z^2}{2}\ge\frac{\left(x+y+z\right)^2}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi x=y=z=1
\(\frac{x^3}{y}+xy\ge2\sqrt{\frac{x^3}{y}.xy}=2x^2\)
Tương tự \(\frac{y^3}{z}+yz\ge2y^2;\frac{z^3}{x}+xz\ge2z^2\)
\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge2\left(x^2+y^2+z^2\right)-\left(xy+yz+zx\right)\ge2\left(xy+yz+zx\right)-\left(xy+yz+zx\right)\)
\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge xy+yz+zx\)