K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 10 2019

\(4x^2+4\ge8x\) ; \(6y^2+\frac{8}{3}\ge8y\) ; \(3z^2+\frac{16}{3}\ge8z\)

Cộng vế với vế:

\(4x^2+6y^2+3z^2+12\ge8\left(x+y+z\right)=24\)

\(\Rightarrow4x^2+6y^2+3z^2\ge12\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=1\\y=\frac{2}{3}\\z=\frac{4}{3}\end{matrix}\right.\)

6 tháng 11 2019

Cảm ơn bạn!

NV
12 tháng 10 2020

\(S=\frac{a}{a+2b}+\frac{b}{b+2c}+\frac{c}{c+2a}\)

\(S=\frac{a^2}{a^2+2ab}+\frac{b^2}{b^2+2bc}+\frac{c^2}{c^2+2ca}\)

\(S\ge\frac{\left(a+b+c\right)^2}{a^2+2ab+b^2+2bc+c^2+2ca}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

\(S_{min}=1\) khi \(a=b=c=1\)

GTNN của S hoàn toàn không cần đến điều kiện \(abc=1\), nó luôn bằng 1 với mọi số thực dương a;b;c (nên điều kiện \(abc=1\) là thừa)

NV
12 tháng 10 2020

Do \(x^{2016}+y^{2016}+z^{2016}=1\Rightarrow\left\{{}\begin{matrix}0\le x^{2016}\le1\\0\le y^{2016}\le1\\0\le z^{2016}\le1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x^{2017}\le x^{2016}\\y^{2017}\le y^{2016}\\z^{2017}\le z^{2016}\end{matrix}\right.\)

\(\Rightarrow x^{2017}+y^{2017}+z^{2017}\le x^{2016}+y^{2016}+z^{2016}\)

\(\Rightarrow x^{2017}+y^{2017}+z^{2017}\le1\)

Đẳng thức xảy ra khi vả chỉ khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và hoán vị

\(\Rightarrow P=1\)

Gọi \(d=ƯC\left(m^2+n^2;m+n\right)\)

\(\Rightarrow\left(m+n\right)^2-\left(m^2+n^2\right)⋮d\Rightarrow2mn⋮d\)

TH1: \(2⋮d\Rightarrow d_{max}=2\) khi \(m;n\) cùng lẻ

TH2: \(m⋮d\) , mà \(m+n⋮d\Rightarrow n⋮d\)

\(\Rightarrow d=ƯC\left(m;n\right)\Rightarrow d=1\)

Th3: \(n⋮d\) tương tự như trên ta có \(d=1\)

Vậy ước chung lớn nhất A; B bằng 2 khi m; n cùng lẻ

N
1 tháng 7 2017

Hình như đề có vấn đề đó bạn

theo mình

Có : x+y+z =1

\(\Rightarrow\)\(x^2+y^2+z^2+2xz+2yz+2xy=1\)

\(\Leftrightarrow\)xy+xz+zy =0

Lại có : \(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=1\left(1-0\right)=1\)

\(x^3+y^3+z^3=1+3=4\)

\(\Rightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=4\)

2 tháng 7 2017

\(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{\left(yz\right)^3+\left(xz\right)^3+\left(xy\right)^3}{x^3y^3z^3}=\left(yz\right)^3+\left(xz\right)^3+\left(xy\right)^3\)

\(=\left(xy+yz+zx\right)\left[\left(xy\right)^2+\left(yz\right)^2+\left(zx\right)^2-xy^2z-xyz^2-x^2yz\right]+3xy.yz.zx\)

\(=0+3=3\)

14 tháng 4 2017

1) \(1019x^2+18y^4+1007z^2\)

\(=\left(15x^2+15y^4\right)+\left(3y^4+3z^2\right)+\left(1004x^2+1004z^2\right)\)

\(\ge2\sqrt{15x^2.15y^4}+2\sqrt{3y^4.3z^2}+2\sqrt{1004x^2.1004z^2}=30xy^2+6y^2z+2008xz\left(đpcm\right)\)

14 tháng 4 2017

mơn bạn!!

3 tháng 8 2017

mình ko bít

3 tháng 8 2017

mà mình mới lớp 6 thui ahihi

4 tháng 8 2016

Áp dugnj bđt bunhia ta được \(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2=9\)(vì x+y+z=3)
\(\Rightarrow M\ge\frac{9}{3}=3\)
Dấu = xảy ra khi x=y=z và x+y+z=3 =>x=y=z=1
b,
\(P=\frac{x}{\left(x+10\right)^2}\le\frac{x}{40x}=\frac{1}{40}\)
dấu = xảy ra khi x=10

NV
11 tháng 8 2020

2.

Áp dụng BĐT \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

\(\Rightarrow VT=\sqrt{2x+1}+\sqrt{2y+1}+\sqrt{2z+1}\le\sqrt{3\left(2x+1+2y+1+2z+1\right)}\)

\(\Rightarrow VT\le\sqrt{3\left[2\left(x+y+z\right)+3\right]}=\sqrt{15}< \sqrt{16}=4\) (đpcm)

3.

\(VT=a^4+b^4+c^4\ge\frac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\frac{1}{3}\left[3\left(ab+bc+ca\right)\right]^2=27\)

Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)