Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này là tìm GTLN của xyz đúng không?. Làm vậy nhé:
Ta có: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge2\)
\(\Rightarrow\frac{1}{x+1}\ge1-\frac{1}{y+1}+1-\frac{1}{z+1}=\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\left(1\right)\)
Tương tự ta có: \(\hept{\begin{cases}\frac{1}{y+1}\ge2\sqrt{\frac{zx}{\left(z+1\right)\left(x+1\right)}}\left(2\right)\\\frac{1}{z+1}\ge2\sqrt{\frac{xy}{\left(x+1\right)\left(y+1\right)}}\left(3\right)\end{cases}}\)
Nhân (1), (2), (3) vế theo vế ta được:
\(\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
\(\Leftrightarrow xyz\le\frac{1}{8}\)
Vậy GTLN là \(xyz=\frac{1}{8}\)khi \(x=y=z=\frac{1}{2}\)
Bổ đề: \(\left(mn+np+pm\right)^2\ge3mnp\left(m+n+p\right)\)(*)
Thật vậy: (*)\(\Leftrightarrow m^2n^2+n^2p^2+p^2m^2+2mnp\left(m+n+p\right)\ge3mnp\left(m+n+p\right)\)\(\Leftrightarrow m^2n^2+n^2p^2+p^2m^2\ge mnp\left(m+n+p\right)\)\(\Leftrightarrow m^2n^2+n^2p^2+p^2m^2-mnp\left(m+n+p\right)\ge0\)\(\Leftrightarrow\left(mn-np\right)^2+\left(np-pm\right)^2+\left(pm-mn\right)^2\ge0\)*đúng*
Vậy bổ đề được chứng minh
Áp dụng vào bài toán, ta được: \(\left(xy+yz+zx\right)^2\ge3xyz\left(x+y+z\right)\)hay \(\left(xy+yz+zx\right)^2\ge3\left(x+y+z\right)\)(Do xyz = 1)
\(\Leftrightarrow\frac{1}{x+y+z}\ge\frac{3}{\left(xy+yz+zx\right)^2}\Rightarrow A\ge\frac{3}{\left(xy+yz+zx\right)^2}-\frac{2}{xy+yz+zx}\)
Đặt \(\frac{1}{xy+yz+zx}=s\)thì \(A\ge3s^2-2s=3\left(s^2-\frac{2}{3}s+\frac{1}{9}\right)-\frac{1}{3}=3\left(s-\frac{1}{3}\right)^2-\frac{1}{3}\ge-\frac{1}{3}\)
Vậy \(A\ge-\frac{1}{3}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x,y,z>0\\x=y=z\\\frac{1}{xy+yz+zx}=\frac{1}{3}\end{cases}}\Rightarrow x=y=z=1\)
Vậy \(MinA=-\frac{1}{3}\), đạt được khi x = y = z = 1
Ta có: \(3=x^2+y^2+z^2\ge xy+yz+xz\ge\frac{\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}{3}\)
=> \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le3\)
\(M=\frac{xyz}{x^2+yz}+\frac{xyz}{y^2+zx}+\frac{xyz}{z^2+xy}\)
\(\le\frac{xyz}{2x\sqrt{yz}}+\frac{xyz}{2y\sqrt{xz}}+\frac{xyz}{2z\sqrt{xy}}\)
\(=\frac{1}{2}\left(\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\right)\le\frac{3}{2}\)
Dấu "=" xảy ra <=> x = y = z=1
Theo em bài này chỉ có min thôi nhé!
Rất tự nhiên để khử căn thức thì ta đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\ge0\)
Khi đó \(M=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\) với abc = \(\sqrt{xyz}=1\) và a,b,c > 0
Dễ thấy \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)
(chuyển vế qua dùng hằng đẳng thức là xong liền hà)
Do đó \(2M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
Đến đây thì chứng minh \(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)
Áp dụng vào ta thu được: \(2M\ge\frac{2}{3}\left(a+b+c\right)\Rightarrow M\ge\frac{1}{3}\left(a+b+c\right)\ge\sqrt[3]{abc}=1\)
Vậy...
P/s: Ko chắc nha!
Áp dụng bất đẳng thức Cauchy , ta có :
\(x+y+z\ge3\sqrt[3]{xyz}\)
<=> \(xyz\ge3\sqrt[3]{xyz}\)
<=> \(x^3y^3z^3\ge27xyz\)
<=> \(x^2y^2z^2\ge27\)
<=> \(\sqrt[3]{x^2y^2z^2}\ge3\)
Ta có
\(P=\frac{1}{x^2+yz+yz}+\frac{1}{y^2+zx+zx}+\frac{1}{z^2+xy+xy}\le\frac{1}{3\sqrt[3]{x^2y^2z^2}}+\frac{1}{3\sqrt[3]{x^2y^2z^2}}+\frac{1}{3\sqrt[3]{x^2y^2z^2}}\)
\(=\frac{1}{\sqrt[3]{x^2y^2z^2}}\le\frac{1}{3}\)
Vậy Max = 1/3
t lắm tắt luôn nhé có nhiều câu quá
áp dụng bdt cô si ta có
a) \(x+y+z+\frac{1}{xyz}\ge4\sqrt[4]{\frac{1.xyz}{xyz}}=4\)
vậy Min của T là 4 dấu = xảy ra khi x=y=z=1
b)
áp dụng BDT cosi ta có
\(x+y+Z\ge3\sqrt[3]{xyz}\)
\(\frac{3}{xyz}+3xyz\ge2\sqrt{\frac{3.3xyz}{xyz}}=6\)
+ vế với vế ta được
\(T+3xyz\ge3\sqrt[3]{xyz}+6\)
\(T\ge3\sqrt[3]{xyz}+6-3xyz\)
có \(xyz\le\frac{\left(x+y+Z\right)^2}{27}\Rightarrow-xyz\ge-\frac{\left(x+y+z\right)^2}{27}\) cùng dấu > thay vào được
\(T\ge3\sqrt[3]{xyz}+6-3\frac{\left(x+y+z\right)^3}{27}\)
Có \(x^2+1\ge2x\)
\(y^2+1\ge2y\)
\(z^2+1\ge2z\) (cosy)
+ vế với vế ta được
\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
\(3\ge\left(x+y+z\right)\Rightarrow-\left(x+y+z\right)\ge-3\) cùng dấu > ta thay được
\(\Rightarrow T\ge3\sqrt[3]{xyz}+6-3\frac{\left(3\right)^3}{27}\)
\(\Rightarrow T\ge6\) dấu = xảy ra khi x=y=z=1
3) dự đoán của chúa pain x=y=z = \(\frac{1}{\sqrt{3}}\)
thử thay vào
\(\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+\frac{1}{\frac{1}{\sqrt{3}^3}}\)
số xấu lắm m tự làm đi tương tự câu 1) 2)
1) dự đoán của chúa Pain x=y=z=1
áp dụng BDT cô si ta có
\(x+y+z+\frac{1}{xyz}\ge4\sqrt[4]{\frac{xyz}{xyz}}=4.\)
Vậy Min là 4 dấu = xảy ra khi x=y=z=1
2 chia cả tử cả mẫu cho \(x^2+y^2+z^2=3\) ta được
\(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}=\frac{3}{xyz}\)
thay số ta được
\(\left(x+y+z+\frac{x}{yz}+\frac{z}{xy}+\frac{y}{zx}\right)\)
áp dụng Cô si ta được
\(VT\ge6\sqrt[6]{\frac{x^2y^2z^2}{y^2z^2x^2}}=6\)
vậy Min là 6 dấu = xảy ra khi x=y=z=1
3) TƯỢNG TỰ cậu 2
chia xyz cho 2 vế
\(x^2+y^2+z^2=1\)
ta được
\(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}=\frac{1}{xyz}\)
thay số
\(\left(x+y+z\right)+\left(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\right)\)
áp dụng BDT cô si ta được
\(\left(\frac{x}{\frac{1}{\sqrt{3}^2}}+\frac{y}{\frac{1}{\sqrt{3}^2}}+\frac{x}{\frac{1}{\sqrt{3}^2}}\right)+\left(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\right)\ge....\)
tự làm
Ta có 1 = x+y+z = (x+y) +z
Áp dụng bđt Cauchy với 2 số dương x+y và z ta đc : \(1=\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\Rightarrow1^2\ge4\left(x+y\right)z\)
hay \(1\ge4\left(x+y\right)z\Rightarrow x+y\ge4\left(x+y\right)^2z\)(vì x+y >0) (*)
Ta lại có \(\left(x+y\right)^2\ge4xy\)(**)
Từ (*) và (**) => \(x+y\ge16xyz\Rightarrow\frac{x+y}{xyz}\ge16\)
Dấu = xảy ra <=> x = y ; x+y+z =1 và (x+y)/xyz = 16
Giải hệ này ta đc x = y = 1/4 và z = 1/2
Ta có 1 = x+y+z = (x+y) +z
Áp dụng bđt Cauchy với 2 số dương x+y và z ta đc : $1=\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\Rightarrow1^2\ge4\left(x+y\right)z$1=(x+y)+z≥2√(x+y)z⇒12≥4(x+y)z
hay $1\ge4\left(x+y\right)z\Rightarrow x+y\ge4\left(x+y\right)^2z$1≥4(x+y)z⇒x+y≥4(x+y)2z(vì x+y >0) (*)
Ta lại có $\left(x+y\right)^2\ge4xy$(x+y)2≥4xy(**)
Từ (*) và (**) => $x+y\ge16xyz\Rightarrow\frac{x+y}{xyz}\ge16$x+y≥16xyz⇒x+yxyz ≥16
Dấu = xảy ra <=> x = y ; x+y+z =1 và (x+y)/xyz = 16
Giải hệ này ta đc x = y = 1/4 và z = 1/2