Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2
= 4/9 .y.y.y . (3/2-3/2.y)^2
=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)
<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5
=4/9 . 243/3125
=108/3125
Đến đó tự giải
\(\frac{\left(x+y+z\right)^2}{3}\ge xy+yz+zx\Rightarrow x+y+z\ge3\)
\(P=\frac{x^2}{\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}}+\frac{y^2}{\sqrt{\left(y+2\right)\left(y^2-2y+4\right)}}+\frac{z^2}{\sqrt{\left(z+2\right)\left(z^2-2z+4\right)}}\)
\(\Rightarrow P\ge\frac{\left(x+y+z\right)^2}{\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}+\sqrt{\left(y+2\right)\left(y^2-2y+4\right)}+\sqrt{\left(z+2\right)\left(z^2-2z+4\right)}}\)
\(\Rightarrow P\ge\frac{2\left(x+y+z\right)^2}{\left(x+2+x^2-2x+4\right)+\left(y+2+y^2-2y+4\right)+\left(z+2+z^2-2z+4\right)}\)
\(\Rightarrow P\ge\frac{2\left(x+y+z\right)^2}{\left(x^2+y^2+z^2\right)-\left(x+y+z\right)+18}=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-\left(x+y+z\right)-2\left(xy+yz+zx\right)+18}=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-\left(x+y+z\right)+12}\)
Dự đoán Min P=1 khi x+y+z=3
Đặt \(t=x+y+z\ge3\)
\(\Rightarrow P\ge\frac{2t^2}{t^2-t+12}\Rightarrow P-1\ge\frac{t^2+t-12}{t^2-t+12}=\frac{\left(t-3\right)\left(t+4\right)}{t^2-t+12}\ge0\)
\(\Rightarrow P\ge1\)
Đoạn cuối của cô Nguyễn Linh Chi em có 1 cách biến đổi tương đương cũng khá ngắn gọn ạ
\(RHS\ge2\cdot\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)
Theo đánh giá của cô Nguyễn Linh Chi thì \(xy+yz+zx\ge x+y+z\ge3\)
Ta cần chứng minh:\(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\ge\frac{1}{2}\)
Thật vậy,BĐT tương đương với:
\(2\left(x+y+z\right)^2\ge x^2+y^2+z^2-x-y-z+18\)
\(\Leftrightarrow\left(x+y+z\right)^2+x+y+z-12\ge0\)
\(\Leftrightarrow\left(x+y+z+4\right)\left(x+y+z-3\right)\ge0\) ( luôn đúng với \(x+y+z\ge3\) )
=> đpcm
Áp dụng: \(AB\le\frac{\left(A+B\right)^2}{4}\)với mọi A, B
Ta có:
\(x^3+8=\left(x+2\right)\left(x^2-2x+4\right)\le\frac{\left(x+2+x^2-2x+4\right)^2}{4}\)
=> \(\sqrt{x^3+8}\le\frac{x^2-x+6}{2}\)
=> \(\frac{x^2}{\sqrt{x^3+8}}\ge\frac{2x^2}{x^2-x+6}\)
Tương tự
=> \(\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}\)
\(\ge\frac{2x^2}{x^2-x+6}+\frac{2y^2}{y^2-y+6}+\frac{2z^2}{z^2-z+6}\)
\(=2\left(\frac{x^2}{x^2-x+6}+\frac{y^2}{y^2-y+6}+\frac{z^2}{z^2-z+6}\right)\)
\(\ge2\frac{\left(x+y+z\right)^2}{x^2-x+6+y^2-y+6+z^2-z+6}\)
\(=2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)(1)
Ta có: \(x+y+z\le xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\) với mọi x, y, z
=> \(\left(x+y+z\right)^2-3\left(x+y+z\right)\ge0\)
=> \(\left(x+y+z\right)\left(x+y+z-3\right)\ge0\)
=> \(x+y+z\ge3\)với mọi x, y, z dương
Và \(x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\le\left(x+y+z\right)^2-2\left(x+y+z\right)\)
Do đó: \(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)
\(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2-3\left(x+y+z\right)+18}\)
Đặt: x + y + z = t ( t\(\ge3\))
Xét hiệu: \(\frac{t^2}{t^2-3t+18}-\frac{1}{2}=\frac{t^2+3t-18}{t^2-3t+18}=\frac{\left(t-3\right)\left(t+6\right)}{\left(t-\frac{3}{2}\right)^2+\frac{63}{4}}\ge0\)với mọi t \(\ge3\)
Do đó: \(\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2-3\left(x+y+z\right)+18}\ge\frac{1}{2}\)(2)
Từ (1); (2)
=> \(\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}\ge2.\frac{1}{2}=1\)
Dấu "=" xảy ra <=> x= y = z = 1
ĐKXĐ : \(\hept{\begin{cases}x\ge1\\y\ge2\\z\ge3\end{cases}}\)
Với điều kiện trên thì pt đã cho tương đương với :
\(\left[\left(x-1\right)-2\sqrt{x-1}+1\right]+\left[\left(y-2\right)-4\sqrt{y-2}+4\right]+\left[\left(z-3\right)-6\sqrt{z-3}+9\right]=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
Mà \(\left(\sqrt{x-1}-1\right)^2\ge0,\left(\sqrt{y-2}-2\right)^2\ge0,\left(\sqrt{z-3}-3\right)^2\ge0\)
\(\Rightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2\ge0\)
Vậy đẳng thức xảy ra khi \(\hept{\begin{cases}\left(\sqrt{x-1}-1\right)^2=0\\\left(\sqrt{y-2}-2\right)^2=0\\\left(\sqrt{z-3}-3\right)^2=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\) (tmđk)
ĐKXĐ : {
x≥1 |
y≥2 |
z≥3 |
Với điều kiện trên thì pt đã cho tương đương với :
[(x−1)−2√x−1+1]+[(y−2)−4√y−2+4]+[(z−3)−6√z−3+9]=0
⇔(√x−1−1)2+(√y−2−2)2+(√z−3−3)2=0
Mà (√x−1−1)2≥0,(√y−2−2)2≥0,(√z−3−3)2≥0
⇒(√x−1−1)2+(√y−2−2)2+(√z−3−3)2≥0
Vậy đẳng thức xảy ra khi {
(√x−1−1)2=0 |
(√y−2−2)2=0 |
(√z−3−3)2=0 |
Sai đề kìa \(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)
\(\Leftrightarrow\left(x-2\sqrt{x-1}+1-1\right)+\left(y-4\sqrt{y-2}+4-2\right)+\left(z-6\sqrt{z-3}+9-3\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)
Sai đề kìa x+y+z+8=2√x−1+4√y−2+6√z−3
⇔x+y+z+8−2√x−1−4√y−2−6√z−3=0
⇔(x−2√x−1+1−1)+(y−4√y−2+4−2)+(z−6√z−3+9−3)=0
⇔(√x−1−1)2+(√y−2−2)2+(√z−3−3)2=0
⇒{
√x−1−1=0 |
√y−2−2=0 |
√z−3−3=0 |
⇒{
√x−1=1 |
√y−2=2 |
√z−3=3 |
\(A=\sqrt{x^3+8}+\sqrt{y^3+8}+\sqrt{z^3+8}\)
\(A=\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}+\sqrt{\left(y+2\right)\left(y^2-2x+4\right)}+\sqrt{\left(z+2\right)\left(z^2-2z+4\right)}\)
\(\sqrt{\frac{1}{2}}A=\sqrt{\left(x+2\right)\left(x^2-2x+4\right).\frac{1}{2}}+\sqrt{\left(y+2\right)\left(y^2-2x+4\right).\frac{1}{2}}+\sqrt{\left(z+2\right)\left(z^2-2z+4\right).\frac{1}{2}}\)\(\sqrt{\frac{1}{2}}A=\sqrt{\left(x+2\right)\left(\frac{x^2}{2}-x+2\right)}+\sqrt{\left(y+2\right)\left(\frac{y^2}{2}-x+2\right)}+\sqrt{\left(z+2\right)\left(\frac{z^2}{2}-z+2\right)}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{\frac{1}{2}}A\le\frac{x+2+\frac{x^2}{2}-x+2+y+2+\frac{y^2}{2}-y+2+z+2+\frac{z^2}{2}-z+2}{2}=\frac{12+\frac{x^2+y^2+z^2}{2}}{2}=\frac{12+\frac{48}{2}}{2}=\frac{12+24}{2}=\frac{36}{2}=18\)
\(\Leftrightarrow A\le18:\sqrt{\frac{1}{2}}=18\sqrt{2}\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x+2=\frac{x^2}{2}-x+2\\y+2=\frac{y^2}{2}-y+2\\z+2=\frac{z^2}{2}-z+2\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=4x\\y^2=4y\\z^2=4z\end{cases}}\Leftrightarrow\hept{\begin{cases}x\left(x-4\right)=0\\y\left(y-4\right)=0\\z\left(z-4\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=4\\z=4\end{cases}\left(v\text{ì}x,y,z>0\right)}}\)
Vậy \(A_{max}=18\sqrt{2}\Leftrightarrow x=y=z=4\)
Tham khảo nhé~