Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^3 +y^3 + z^3 >=3
x*x^2 + y*y^2 + z*z^2 >=3
(x*y*z)*(x^2 + y^2 + z^2)>=3
(x*y*z) *3>=3
mà x,y,z >0
=> x^3 + y^3 + z^3 >= 3
Cái thứ nhất nhân cả tử với mẫu với x
Cái thứ hai nhân cả tử với mẫu với y
Cái thứ ba nhân cả tử với mẫu với z
Áp dụng cô si ở mẫu
dấu = xảy ra khi x=y=z=1( không TM) => Không xảy ra dấu =
=> đpcm
p/s: Mình định trình bày đầy đủ cho bạn nhưng đánh gần xong thì tự nhiên máy tính thoát ra. giờ thì hướng dẫn thôi. Sorry
Chứng minh BĐT \(\ge2\)chứ?
Ta có: \(\frac{x^2}{\sqrt{1-x^2}}=\frac{x^3}{x\sqrt{1-x^2}}\ge\frac{x^3}{\frac{x^2+1-x^2}{2}}=2x^3\)
Tương tự ta có: \(\frac{y^2}{\sqrt{1-y^2}}\ge2y^3\)
Và: \(\frac{z^2}{\sqrt{1-z^2}}\ge2z^3\)
Cộng theo 3 vế BĐT trên ta có:
\(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\ge2x^3+2y^3+2z^3=2\left(x^3+y^2+z^2\right)=2\left(đpcm\right)\)
Áp dụng BĐT Bunhiacopski ta có:
\(\frac{x}{x^3+y^2+z}=\frac{x\left(\frac{1}{x}+1+z\right)}{\left(x^3+y^2+z\right)\left(\frac{1}{x}+1+z\right)}\le\frac{1+x+xz}{\left(x+y+z\right)^2}=\frac{1+x+xz}{9}\)
Tương tự rồi cộng lại ta được:
\(T\le\frac{3+x+y+z+xy+yz+zx}{9}=\frac{6+xy+yz+zx}{9}\le\frac{6+\frac{\left(x+y+z\right)^2}{3}}{9}=1\)
Dấu "=" xảy ra tại \(x=y=z=1\)
Ta có \(A=\frac{x^4}{x^3+x^2y+xy^2}+...\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^3+y^3+z^3+xy^2+yz^2+zx^2+x^2y+y^2z+z^2x}\)
=> \(A\ge\frac{\left(x^2+y^2+z^2\right)^2}{\left(x^2+y^2+z^2\right)\left(x+y+z\right)}=\frac{x^2+y^2+z^2}{x+y+z}\ge\frac{x+y+z}{3}\left(ĐPCM\right)\)
dấu = xảy ra <=> x=y=z>=0
Áp dụng bđt cosi ta có
\(\frac{x^3}{y^2+z}+\frac{9}{25}x\left(y^2+z\right)\ge\frac{6}{5}x^2\)
................................................................,,,,
=>\(VT\ge\frac{6}{5}\left(x^2+y^2+z^2\right)-\frac{9}{25}\left(xy^2+yz^2+zx^2+xy+yz+xz\right)\)
Ta có \(\left(x+y+z\right)\left(x^2+y^2+z^2\right)=\left(x^3+xz^2\right)+\left(y^3+yx^2\right)+\left(z^3+zy^2\right)+x^2z+y^2x+z^2y\)
\(\ge3\left(xy^2+yz^2+zx^2\right)\)
=> \(xy^2+yz^2+zx^2\le\frac{2}{3}\left(x^2+y^2+z^2\right)\)
Lại có \(xy+yz+xz\le x^2+y^2+z^2\)
Khi đó
\(VT\ge\frac{6}{5}\left(x^2+...\right)-\frac{9}{25}\left(\frac{5}{3}\left(x^2+y^2+z^2\right)\right)=\frac{3}{5}\left(x^2+y^2+z^2\right)\ge\frac{\left(x+y+z\right)^2}{5}=\frac{4}{5}\)
Vậy MinA=4/5 khi x=y=z=2/3