K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2019

sai đề rồi bạn ạ

VD giả sử x=1;y=2;z=5 thì ta sẽ có \(\frac{3}{7}>\frac{1}{2}\)

là vô lí

30 tháng 8 2019

Ta có : \(\frac{x}{x+y}>\frac{x}{x+y+z}.\)

\(\frac{y}{y+z}>\frac{y}{x+y+z}\)

\(\frac{z}{z+x}>\frac{z}{x+y+z}\)

\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\)\(\frac{x+y+z}{x+y+z}=1\)

Hay \(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>1\)\(\left(1\right)\)

Lại có : \(\frac{x}{x+y}< \frac{x+z}{x+y+z}\)

\(\frac{y}{y+z}< \frac{y+x}{x+y+z}\)

\(\frac{z}{z+x}< \frac{z+y}{x+y+z}\)

\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< \frac{2x+2y+2z}{x+y+z}=2\)

Hay \(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< 2\)\(\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow1< \frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< 2\)\(\left(đpcm\right)\)

20 tháng 10 2017

Vì \(x< y\Rightarrow\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\) (*)

Thêm ab vào hai vế của (*) : ad + ab < bc + ab

                                             => a(b+d) < b(a+c)

                                            => \(\frac{a}{b}< \frac{a+c}{b+d}\) 

                                            => x < z (1)

Thêm cd vào hai vế của (*): ad + cd < bc + cd

                                          => d(a + c) < c(b + d)

                                          => \(\frac{a+c}{b+d}< \frac{c}{d}\)  

                                          => z < y (2)

Từ (1) và (2) => x < z < y

7 tháng 11 2017

Vì x<y⇒ab <cd ⇒ad<bc (*)

Thêm ab vào hai vế của (*) : ad + ab < bc + ab

                                             => a(b+d) < b(a+c)

                                            => ab <a+cb+d  

                                            => x < z (1)

Thêm cd vào hai vế của (*): ad + cd < bc + cd

                                          => d(a + c) < c(b + d)

                                          => a+cb+d <cd   

                                          => z < y (2)

Từ (1) và (2) => x < z < y

1 tháng 12 2015

A= x+y-y/x+y + y+z-z/y+z + z+x-x/x+z

A=3 - ( x/x+z + y/x+y + z/y+z)

Mà:x/x+z>x/x+y+z,x/y+z>y/x+y+z;z/x+z>z/x+y+z

suy ra :A<2     (1)

Mặt khác A=x/x+y + y/y+z + z/x+z

Mà x/x+y>x/x+y+z;y/y+z>y/x+y+z;z/x+z>z/x+y+z

suy ra A=1        (2)

Từ (1) và (2) suy ra 1<A<2 suy ra A ko phải là số nguyên

14 tháng 9 2016

ở câu hỏi hay có đó mk nhớ là v bạn vô tìm thử xem nếu k có thì bảo mk

14 tháng 9 2016

cái câu hỏi mình viết sai đó

nó là như vậy nè:cho x,y,z>0 

cm:1<\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< 2\)

Với x, y, z nguyên dương 

Ta có: \(\frac{x}{x+y}>\frac{x}{x+y+z}\)

          \(\frac{y}{y+z}>\frac{y}{x+y+z}\)

          \(\frac{z}{z+x}>\frac{z}{x+y+z}\)

\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x+y+z}{x+y+z}=1\)(1)

Mặt khác \(\frac{x}{x+y}< 1\Rightarrow\frac{x}{x+y}< \frac{x+z}{x+y+z}\)

           \(\frac{y}{y+z}< \frac{y+x}{x+y+z}\)

           \(\frac{z}{z+x}< \frac{z+y}{x+y+z}\)

\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< 2\)(2)

Từ (1) và (2) => dpcm

14 tháng 1 2018

Có : x/x+y ; y/y+z ; z/z+x đều > 0

=> x/z+y + y/y+z + z/z+x > x/x+y+z + y/x+y+z + z/x+y+z = x+y+z/x+y+z = 1 (1)

Lại có : x,y,z > 0

=> 0 < x/x+y ; y/y+z ; z/z+x < 1

=> x/x+y + y/y+z + z/z+x < x+z/x+y+z + y+x/x+y+z + z+y/x+y+z = x+z+y+x+z+y/x+y+z = 2 (2)

Từ (1) và (2) => ĐPCM

Tk mk nha

8 tháng 1 2018

Cho 3 số nguyên dương chứ bạn ơi !

Có : x/x+y > 0 => x/x+y > x/x+y+z

Tương tự : y/y+z > y/x+y+z ; z/z+x > z/x+y+z

=> x/x+y + y/y+z + z/z+x > x+y+z/x+y+z = 1

Lại có : x < x+y => x/x+y < 1 => 0 < x/x+y < 1 => x/x+y < x+z/x+y+z

Tương tự : y/y+z < y+x/x+y+z ; z/z+x < z+y/x+y+z

=> x/x+y + y/y+z + z/z+x < x+z+y+x+z+y/x+y+z = 2

=> ĐPCM

Tk mk nha

11 tháng 8 2017

1 <  x /x+y + y /y+x+ z /z+x < 2

=> 1 < (x + y + z) / (2x + 2y + 2z)  < 2

=> 1 <  ( x + y + z) / 2 x ( x+ y +z)  < 2

=>  1 < ( 1 /2 + 2 - 1) < 2

Vậy 1< 1,5 < 2 => 1 <  x /x+y + y /y+x+ z /z+x < 2

nhớ tích cho mk nhé! 

14 tháng 1 2018

\(1< \frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{y+z}< 2\)

\(=>1< \left(x+y+z\right):2\left(x+y+z\right)< 2\)

\(=>1< \frac{1}{2}+2-1< 2\)

\(=>1< 1,5< 2\)

\(=>1< \frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\)