Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Mincopxki \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\) ta được
\(VT\ge\sqrt{\left(x+y\right)^2+\left(\frac{1}{x}+\frac{1}{y}\right)^2}+\sqrt{z^2+\frac{1}{z^2}}\)
\(\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)
Áp dụng bđt Cô-si có
\(\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\ge9\sqrt[3]{\left(xyz\right)^2}+\frac{9}{\sqrt[3]{\left(xyz\right)^2}}\)
Đặt \(\sqrt[3]{\left(xyz\right)^2}=t\)
\(\Rightarrow0\le t=\sqrt[3]{\left(xyz\right)^2}\le\left(\frac{x+y+z}{3}\right)^2=\frac{1}{4}\)
Khi đó \(VT\ge\sqrt{9t+\frac{9}{t}}=\sqrt{3\left(48t+\frac{3}{t}-45t\right)}\ge\sqrt{3\left(2.\sqrt{3.48}-\frac{45}{4}\right)}=\frac{3\sqrt{17}}{2}\)
Đầu tiên CM BDT :
\(1+x^3+y^3\ge xy"x+y+z"\)
\(\Leftrightarrow x^3+y^3\ge xy"x+y"\)" do \(xyz=1\)"
\(\Leftrightarrow"x+y""x^2+y^2-xy"-xy"x+y"\ge0\)
\(\Leftrightarrow"x+y""x-y"^2\ge0\)
BDT luôn đúng theo gt
\(\Rightarrow\sqrt{"1+x^3+y^3"}\ge\sqrt{xy"x+y+z"}\)
\(\Rightarrow\sqrt{\frac{"1+x^3+y^3}{xy}}\ge\sqrt{\frac{"x+y+z"}{xz}}\)
Tương tự
\(\Rightarrow\sqrt{\frac{"1+z^3+y^3}{zy}}\ge\sqrt{\frac{"x+y+z"}{zy}}\)
\(\sqrt{\frac{"1+x^3+y^3"}{xz}}\ge\sqrt{\frac{"x+y+z"}{xz}}\)
\(\Rightarrow VT\ge\sqrt{"x+y+z"}.\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\)
AD BDT Cauchy cho các số > 0
\(x+y+z\ge3\). \(\sqrt[3]{xyz}=3\)
\(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\ge\frac{3}{\sqrt[3]{xyz}}=3\)
\(\Rightarrow VT\ge\sqrt{3}.3=3\sqrt{3}=VP\)
\(\Rightarrow VT\ge VP\)
\(\Rightarrow DPCM\)
Vậy Dấu \(= khi x=y=z=1\)
P/s: Thay dấu noặc kép thành ngọc đơn nha, Ko chắc đâu
Cái thứ nhất nhân cả tử với mẫu với x
Cái thứ hai nhân cả tử với mẫu với y
Cái thứ ba nhân cả tử với mẫu với z
Áp dụng cô si ở mẫu
dấu = xảy ra khi x=y=z=1( không TM) => Không xảy ra dấu =
=> đpcm
p/s: Mình định trình bày đầy đủ cho bạn nhưng đánh gần xong thì tự nhiên máy tính thoát ra. giờ thì hướng dẫn thôi. Sorry
Chứng minh BĐT \(\ge2\)chứ?
Ta có: \(\frac{x^2}{\sqrt{1-x^2}}=\frac{x^3}{x\sqrt{1-x^2}}\ge\frac{x^3}{\frac{x^2+1-x^2}{2}}=2x^3\)
Tương tự ta có: \(\frac{y^2}{\sqrt{1-y^2}}\ge2y^3\)
Và: \(\frac{z^2}{\sqrt{1-z^2}}\ge2z^3\)
Cộng theo 3 vế BĐT trên ta có:
\(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\ge2x^3+2y^3+2z^3=2\left(x^3+y^2+z^2\right)=2\left(đpcm\right)\)
b2 \(\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}=\sqrt{x}.\sqrt{1-\frac{1}{x}}+\sqrt{y}.\)\(\sqrt{y}.\sqrt{1-\frac{1}{y}}+\sqrt{z}.\sqrt{1-\frac{1}{z}}\)rồi dung bunhia là xong
A= \(\frac{1}{a^3}\)+ \(\frac{1}{b^3}\)+ \(\frac{1}{c^3}\)+ \(\frac{ab^2}{c^3}\)+ \(\frac{bc^2}{a^3}\)+ \(\frac{ca^2}{b^3}\)
Svacxo:
3 cái đầu >= \(\frac{9}{a^3+b^3+c^3}\)
3 cái sau >= \(\frac{\left(\sqrt{a}b+\sqrt{c}b+\sqrt{a}c\right)^2}{a^3+b^3+c^3}\)
Cô-si: cái tử bỏ bình phương >= 3\(\sqrt{abc}\)
=> cái tử >= 9abc= 9 vì abc=1
Còn lại tự làm
\(\frac{P}{\sqrt{6}}=\sum\frac{1}{\sqrt{6}}.\frac{1}{\sqrt{2x^2+y^2+3}}\le\frac{1}{2}\sum\left(\frac{1}{6}+\frac{1}{2x^2+y^2+3}\right)\)
\(\frac{P}{\sqrt{6}}\le\frac{1}{4}+\frac{1}{2}\sum\frac{1}{2\left(x^2+1\right)+\left(y^2+1\right)}\le\frac{1}{4}+\frac{1}{2}\sum\frac{1}{4x+2y}\)
\(\frac{P}{\sqrt{6}}\le\frac{1}{4}+\frac{1}{4}\sum\frac{1}{x+x+y}\le\frac{1}{4}+\frac{1}{36}\left(\frac{2}{x}+\frac{1}{y}+\frac{2}{y}+\frac{1}{z}+\frac{2}{z}+\frac{1}{x}\right)\)
\(\frac{P}{\sqrt{6}}\le\frac{1}{4}+\frac{1}{12}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}\)
\(\Rightarrow P\le\frac{\sqrt{6}}{2}\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Áp dụng BĐT Cauchy - Schwarz ta có :
\(\frac{1}{\sqrt{x}+2\sqrt{y}}\le\frac{1}{9}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)\)
Tương tự cho 2 BĐT trên ta có :
\(\frac{1}{3}VP\le\frac{1}{9}.3\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)\)
\(=\frac{1}{3}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)=\frac{1}{3}VT\)
Xảy ra khi \(x=y=z\)
Chúc bạn học tốt !!!
ta có bdt (\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\))(a+b+c)\(\ge\)9 (dễ dàng chứng minh) => \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
Áp dụng bdt trên ta được
\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{y}}\ge\frac{9}{2\sqrt{y}+\sqrt{x}}\)
\(\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}+\frac{1}{\sqrt{z}}\ge\frac{9}{\sqrt{y}+2\sqrt{z}}\)
\(\frac{1}{\sqrt{z}}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}}\ge\frac{9}{\sqrt{z}+2\sqrt{x}}\)
Cộng vế theo vế ta đươc đt cần chứng minh
Dấu bằng khi x=y=z
:3 em từ olm sang đây có gì sai thì chỉ bảo
Áp dụng bất đẳng thức \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\forall x;y;z\inℝ\)
ta có \(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)=9abc>0\Rightarrow ab+bc+ca\ge3\sqrt{abc}\)Ta lại có \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\forall a;b;c>0\)
Thật vậy \(\left(1+a\right)\left(1+b\right)\left(1+c\right)=1+\left(a+b+c\right)+\left(ab+bc+ca\right)+abc\)
\(\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+abc=\left(1+\sqrt[3]{abc}\right)^3\)
Khi đó \(P\le\frac{2}{3\left(1+\sqrt{abc}\right)}+\frac{\sqrt[3]{abc}}{1+\sqrt[3]{abc}}+\frac{\sqrt{abc}}{6}\)
Đặt \(\sqrt[6]{abc}=t\Rightarrow\sqrt[3]{abc}=t^2,\sqrt{abc}=t^3\)
Vì a,b,c > 0 nên 0<abc \(\le\left(\frac{a+b+c}{3}\right)^2=1\Rightarrow0< t\le1\)
Xét hàm số \(f\left(t\right)=\frac{2}{3\left(1+t^3\right)}+\frac{t^2}{1+t^2}+\frac{1}{6}t^3;t\in(0;1]\)
\(\Rightarrow f'\left(t\right)=\frac{2t\left(t-1\right)\left(t^5-1\right)}{\left(1+t^3\right)^2\left(1+t^2\right)^2}+\frac{1}{2}t^2>0\forall t\in(0;1]\)
Do hàm số đồng biến trên (0;1] nên \(f\left(t\right)< f\left(1\right)\Rightarrow P\le1\)
\(\Rightarrow\frac{2}{3+ab+bc+ca}+\frac{\sqrt{abc}}{6}+\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\le1\)
Dấu ''='' xảy ra khi \(a=b=c=1\)
\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)
\(\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}=\sqrt{\left(x+y+z\right)^2+\frac{81}{16\left(x+y+z\right)^2}+\frac{1215}{16\left(x+y+z\right)^2}}\)
\(\ge\sqrt{2\sqrt{\frac{81\left(x+y+z\right)^2}{16\left(x+y+z\right)^2}}+\frac{1215}{16.\left(\frac{3}{2}\right)^2}}=\frac{3\sqrt{17}}{2}\)
Dấu "=" xảy ra khi \(z=y=z=\frac{1}{2}\)