Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT AM-GM ta có:
\(6=\frac{1}{x}+\frac{2}{y}+\frac{3}{z}=\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}+\frac{1}{z}\)
\(\geq 6\sqrt[6]{\frac{1}{xy^2z^3}}\)
\(\Leftrightarrow \frac{1}{xy^2z^3}\leq 1\Leftrightarrow xy^2z^3\geq 1\)
Tiếp tục áp dụng BĐT AM-GM:
\(A=x+y^2+z^3\geq 3\sqrt[3]{xy^2z^3}\geq 3\sqrt[3]{1}=3\)
Vậy \(A_{\min}=3\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} \frac{1}{x}=\frac{1}{y}=\frac{1}{z}\\ x=y^2=z^3\end{matrix}\right.\Leftrightarrow x=y=z=1\)
\(\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}+3\)
\(< =>\dfrac{y+z}{x}+1+\dfrac{x+z}{y}+1+\dfrac{x+y}{z}+1\)
\(< =>\dfrac{y+z}{x}+\dfrac{x}{x}+\dfrac{x+z}{y}+\dfrac{y}{y}+\dfrac{x+y}{z}+\dfrac{z}{z}\)
\(< =>\dfrac{x+y+z}{x}+\dfrac{x+y+z}{y}+\dfrac{x+y+z}{z}\) (1)
Thay x+y+z=0vào (1), ta có:\(\dfrac{0}{x}+\dfrac{0}{y}+\dfrac{0}{z}=0+0+0=0\)
1) \(\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}=0\)
\(\Leftrightarrow\dfrac{3}{x-3}+\dfrac{6x}{x^2-9}+\dfrac{x}{x+3}=0\)
\(\Leftrightarrow\dfrac{3}{x-3}+\dfrac{6x}{\left(x-3\right)\left(x+3\right)}+\dfrac{x}{x+3}=0\)
\(\Leftrightarrow\dfrac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{6x}{\left(x-3\right)\left(x+3\right)}+\dfrac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\dfrac{3\left(x+3\right)+6x+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\dfrac{3x+9+6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\dfrac{x^2+6x+9}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\dfrac{x^2+2.x.3+3^2}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\dfrac{x+3}{x-3}=0\)
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy x=-3
bạn ơi x ko thể bằng -3 đc vì
\(\dfrac{x}{x+3}=\dfrac{-3}{-3+3}=\dfrac{-3}{0}\) là sai
ÁP dụng bất đẳng thức AM-GM ta có:
\(P=\dfrac{x^2}{x^2+2yz}+\dfrac{y^2}{y^2+2xz}+\dfrac{z^2}{z^2+2xy}\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(xy+yz+xz\right)}\)\(=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
Dấu "=" xảy ra\(\Leftrightarrow x=y=z>0\)
Vậy \(MinP=1\Leftrightarrow x=y=z>0\)
Áp dụng BĐT Cauchy cho các số dương , ta có :
\(\dfrac{xy}{z}+\dfrac{yz}{x}\) ≥ \(2\sqrt{\dfrac{xy}{z}.\dfrac{yz}{x}}=2\sqrt{y^2}=2y\left(1\right)\)
\(\dfrac{yz}{x}+\dfrac{xz}{y}\) ≥ \(2\sqrt{\dfrac{yz}{x}.\dfrac{xz}{y}}=2\sqrt{z^2}=2z\left(2\right)\)
\(\dfrac{xy}{z}+\dfrac{xz}{y}\) ≥ \(2\sqrt{\dfrac{xy}{z}.\dfrac{xz}{y}}=2\sqrt{x^2}=2x\left(3\right)\)
Cộng từng vế của ( 1 ; 2 ; 3) , ta được :
\(2\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\right)\) ≥ \(2\left(x+y+z\right)\)
⇔ \(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\) ≥ \(x+y+z=2019\)
⇒ \(P_{Min}=2019\) ⇔ \(x=y=z=673\)
Bổ đề : \(x^3+y^3\ge xy\left(x+y\right)=x^2y+xy^2\)
C/m bổ đề : \(x^3+y^3\ge xy\left(x+y\right)\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)
Vậy bổ đề đúng .
Áp dụng vào bài toán
\(\dfrac{1}{x^3+y^3+1}+\dfrac{1}{y^3+z^3+1}+\dfrac{1}{z^3+x^3+1}\le1\)
Ta có : \(x^3+y^3+1\ge xy\left(x+y\right)+1=xy\left(x+y\right)+xyz=xy\left(x+y+z\right)\)
\(\Leftrightarrow\dfrac{1}{x^3+y^3+1}\le\dfrac{xyz}{xy\left(x+y+z\right)}=\dfrac{z}{x+y+z}\)
Chứng minh tương tự ta được : \(\dfrac{1}{y^3+z^3+1}\le\dfrac{x}{x+y+z}\)
\(\dfrac{1}{z^3+x^3+1}\le\dfrac{y}{x+y+z}\)
Cộng từng về ta được :
\(\dfrac{1}{x^3+y^3+1}+\dfrac{1}{y^3+z^3+1}+\dfrac{1}{z^3+x^3+1}\ge\dfrac{x+y+z}{x+y+z}=1\)
=> ĐPCM .
\(Q=\dfrac{x^3}{y+z}+\dfrac{y^3}{x+z}+\dfrac{z^3}{x+y}\)
\(Q=\dfrac{x^4}{xy+xz}+\dfrac{y^4}{xy+zy}+\dfrac{z^4}{xz+yz}\)
\(Q\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{xy+xz+xy+zy+xz+yz}=\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(xy+yz+xz\right)}\)(svac-xo)
Lại có:\(x^2+y^2+z^2\ge xy+yz+zx\)(tự cm)
\(\Rightarrow Q\ge\dfrac{x^2+y^2+z^2}{2}\)
Mặt khác:\(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\ge36\)(tự cm)
\(\Rightarrow x^2+y^2+z^2\ge12\)
\(\Rightarrow Q\ge\dfrac{12}{2}=6\)
Vậy MINQ=6<=>x=y=z=2
Ta có: \((\dfrac{x^3}{y+z}+\dfrac{y+z}{x})+\left(\dfrac{y^3}{x+z}+\dfrac{x+z}{y}\right)+\left(\dfrac{z^3}{x+y}+\dfrac{x+y}{z}\right)\ge2\sqrt{\dfrac{x^3\left(y+z\right)}{\left(y+z\right)x}}+2\sqrt{\dfrac{y^3\left(x+z\right)}{\left(x+z\right)y}}+2\sqrt{\dfrac{z^3\left(x+y\right)}{\left(x+y\right)z}}=2\sqrt{x^2}+2\sqrt{y^2}+2\sqrt{z^2}=2\left(x+y+z\right)\ge2.6=12\)
(Bất đẳng thức cauchy)
mà \(\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}=\dfrac{y}{x}+\dfrac{z}{x}+\dfrac{x}{y}+\dfrac{z}{y}+\dfrac{x}{z}+\dfrac{y}{z} \)
\(=\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\ge2\sqrt{\dfrac{yx}{xy}}+2\sqrt{\dfrac{zx}{xz}}+2\sqrt{\dfrac{zy}{yz}}=2+2+2=6\) (Bất đẳng thức cauchy)
\(\Rightarrow P\ge12-6=6\)
Dấu "=" xảy ra \(\Leftrightarrow\)x = y = z = 2
Vậy GTNN của P = 6 \(\Leftrightarrow\)x = y = z = 2