Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:Áp dụng BĐT Cauchy-Schwarz ta có:
$\frac{1}{2x+y+z}\leq \frac{1}{16}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)$
$\frac{1}{x+2y+z}\leq \frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)$
$\frac{1}{x+y+2z}\leq \frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}\right)$
Cộng theo vế và rút gọn thì:
$\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\leq \frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)$
Áp dụng BĐT : \(\dfrac{1}{x}+\dfrac{1}{y}\) \(\geq \) \(\dfrac{4}{x+y}\) \(\Leftrightarrow\) \(\dfrac{1}{4}.\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\) \(\geq\) \(\dfrac{1}{x+y}\)
Ta có: \(\dfrac{1}{2x+y+z}\)=\(\dfrac{1}{\left(x+y\right)+\left(x+z\right)}\)\(\leq\)\(\dfrac{1}{4}.\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\)\(\leq\)\(\dfrac{1}{4}\left(\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{1}{4}\left(\dfrac{1}{x+z}\right)\right)\)=\(\dfrac{1}{16}\left(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)(1)
Chứng minh tương tự,ta có:
\(\dfrac{1}{x+2y+z}\) \(\leq\) \(\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}\right)\)(2)
\(\dfrac{1}{x+y+2z}\) \(\leq\) \(\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z}\right)\)(3)
Đặt: \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\) là VT
Cộng các BĐT(1),(2),(3) lại với nhau ta được:
VT \(\leq\)\(\dfrac{1}{16}\left(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}\right)+\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z}\right)\)
\(\Leftrightarrow\) VT \(\leq\) \(\dfrac{1}{16}\left(\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{4}{z}\right)\)=\(\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)=\(\dfrac{1}{4}.4=1\)
\(\Leftrightarrow\) \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\) \(\leq\) 1
Dấu = xảy ra khi x=y=z=\(\dfrac{3}{4}\)
+ Áp dụng bđt : \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\forall a,b>0\)
Dấu "=" xảy ra \(\Leftrightarrow a=b\) ta có :
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) . Dấu "=" xảy ra \(\Leftrightarrow x=y\)
+ Tương tự : \(\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{4}{y+z}\). Dấu "=" xảy ra \(\Leftrightarrow y=z\)
\(\dfrac{1}{x}+\dfrac{1}{z}\ge\dfrac{4}{x+z}\). Dấu "=" xảy ra \(\Leftrightarrow x=z\)
Do đó : \(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge\dfrac{4}{x+y}+\dfrac{4}{y+z}+\dfrac{4}{x+z}\)
\(\Rightarrow8\ge4\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\right)\)
\(\Rightarrow2\ge\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
+ \(\dfrac{1}{x+y}+\dfrac{1}{y+z}\ge\dfrac{4}{x+2y+z}\). Dấu "=" xảy ra \(\Leftrightarrow x=z\)
\(\dfrac{1}{y+z}+\dfrac{1}{z+x}\ge\dfrac{4}{x+y+2z}\). Dấu "=" xảy ra \(\Leftrightarrow x=y\)
\(\dfrac{1}{x+y}+\dfrac{1}{x+z}\ge\dfrac{4}{2x+y+z}\). Dấu "=" xảy ra \(\Leftrightarrow y=z\)
Do đó : \(2\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\right)\ge\dfrac{4}{2x+y+z}\)
\(+\dfrac{4}{x+2y+z}+\dfrac{4}{x+y+2z}\)
\(\Rightarrow4\ge4\left(\dfrac{1}{x+2y+z}+\dfrac{1}{2x+y+z}+\dfrac{1}{x+y+2z}\right)\)
\(\Rightarrow1\ge\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
\(\Leftrightarrow\dfrac{1}{x}=\dfrac{1}{y}=\dfrac{1}{z}=\dfrac{4}{3}\)
\(\Leftrightarrow x=y=z=\dfrac{4}{3}\)
* CM bđt : \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\forall a,b>0\)
+ \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
\(\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
Vì bđt cuối luôn đúng mà các phép biển đổi trên là tương đương nên bđt đầu luôn đúng
Dấu "=" xảy ra <=> a= b
Sửa đề:
\(\dfrac{x^2y}{x-1}+\dfrac{y^2z}{y-1}+\dfrac{z^2x}{z-1}=\dfrac{x^2y^2}{xy-y}+\dfrac{y^2z^2}{yz-z}+\dfrac{z^2x^2}{zx-x}\)
\(\ge\dfrac{\left(xy+yz+zx\right)^2}{xy+yz+zx-6}\)
Đặt \(t=xy+yz+zx>x+y+z=6\) thì ta có
\(\dfrac{t^2}{t-6}=24+\dfrac{t^2-24t+144}{t-6}=24+\dfrac{\left(t-12\right)^2}{t-6}\ge24\)
Vậy GTNN là 24 đạt dược khi \(x=y=z=2\)
Ta đặt: \(\left\{{}\begin{matrix}\dfrac{1}{x^2}=a\\\dfrac{1}{y^2}=b\\\dfrac{1}{z^2}=c\end{matrix}\right.\)\(\Rightarrow\sqrt{abc}=abc=1\)
Ta có: \(\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{1}{\sqrt{b}+\sqrt{bc}+1}+\dfrac{1}{\sqrt{c}+\sqrt{ca}+1}\)
\(=\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{1}{\sqrt{b}+\dfrac{1}{\sqrt{a}}+1}+\dfrac{1}{\dfrac{1}{\sqrt{ab}}+\sqrt{ca}+1}\)
\(=\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{\sqrt{a}}{\sqrt{ba}+1+\sqrt{a}}+\dfrac{1}{1+\sqrt{ab}+\sqrt{a}}=1\)
Quay lại bài toán, sau khi đặt bài toán trở thành:
\(P=\dfrac{1}{2b+a+3}+\dfrac{1}{2c+b+3}+\dfrac{1}{2a+c+3}\)
\(=\dfrac{1}{\left(a+b\right)+\left(b+1\right)+2}+\dfrac{1}{\left(b+c\right)+\left(c+1\right)+2}+\dfrac{1}{\left(c+a\right)+\left(a+1\right)+2}\)
\(\le\dfrac{1}{2}\left(\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{1}{\sqrt{b}+\sqrt{bc}+1}+\dfrac{1}{\sqrt{c}+\sqrt{ca}+1}\right)=\dfrac{1}{2}\)
Cái đó t cố tình bỏ đấy. B phải tự làm chứ chẳng lẽ t làm hết??
Ta có: \(\dfrac{16}{2x+y+z}\le\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)
\(\Leftrightarrow\dfrac{1}{2x+y+z}\le\dfrac{1}{16}\left(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\left(1\right)\)
Tương tự ta có: \(\left\{{}\begin{matrix}\dfrac{1}{x+2y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}\right)\left(2\right)\\\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z}\right)\left(3\right)\end{matrix}\right.\)
Cộng (1), (2), (3) vế theo vế ta được:
\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le\dfrac{4}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{4.4}{16}=1\)
Dấu = xảy ra khi \(x=y=z=\dfrac{3}{4}\)