\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

Tính...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

\(\Leftrightarrow\dfrac{yz+xz+xy}{xyz}=0\)

\(\Leftrightarrow xy+xz+yz=0\)

~ ~ ~

\(x^2+2yz\)

\(=x^2+yz-xy-xz\)

\(=\left(x-y\right)\left(x-z\right)\)

Tương tự, ta có: \(y^2+2xz=\left(y-x\right)\left(y-z\right)\)\(z^2+2xy=\left(z-x\right)\left(z-y\right)\)

\(A=\dfrac{yz}{\left(x-z\right)\left(x-y\right)}+\dfrac{xz}{\left(y-x\right)\left(y-z\right)}+\dfrac{xy}{\left(z-x\right)\left(z-y\right)}\)

\(A=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-z\right)\left(x-y\right)\left(y-z\right)}\)

\(=\dfrac{\left(x-z\right)\left(x-y\right)\left(y-z\right)}{\left(x-z\right)\left(x-y\right)\left(y-z\right)}\)

= 1

19 tháng 8 2017

a) Ta có : \(x - 2xy + y - 3 = 0\)

\(\Rightarrow-2xy+x+y=3\)

\(\Rightarrow-2.\left(-2xy+x+y\right)=-2.3\)

\(\Rightarrow4xy-2x-2y=-6\)

\(\Rightarrow4xy-2x-2y+1=-6+1\)

\(\Rightarrow2x.\left(2y-1\right).\left(2y-1\right)=-5\)

\(\Rightarrow\left(2y-1\right).\left(2x-1\right)=-5=1.\left(-5\right)=-5.1=\left(-1\right).5=5.\left(-1\right)\)

Tự lập bảng đi -.-

26 tháng 3 2018

Nhân từng vế bất đẳng thức ta được : (xyz)2 = 36xyz

+ Nếu một trong các số x,y,z bằng 0 thì 2 số còn lại cũng bằng 0

+ Nếu cả 3 số x,y,z khác 0 thì chia 2 vế cho xyz ta được xyz = 36

+ Từ xyz =36 và xy = z ta được z2 = 36 nên z = 6; z = -6

+ Từ xyz =36 và yz = 4x ta được 4x2 = 36 nên x = 3; x = -3

+ Từ xyz =36 và ta được 9y2 = 36 nên y = 2; y = -2

- Nếu z = 6 thì x và y cùng dấu nên x = 3, y = 2 hoặc x = -3 , y = -2

- Nếu z = -6 thì x và y trái dấu nên x = 3 ; y = -2 hoặc x = -3; y=2

Vậy có 5 bộ số (x, y, z) thoã mãn: (0,0,0); (3,2,6);(-3,-2,6);(3,-2,-6);(-3,2.-6)

5 tháng 8 2017

Ta có: \(a+b+c=1 \)

\(\Leftrightarrow(a+b+c)^2=1 \)

\(\Leftrightarrow ab+bc+ca=0 (1) \)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{(x+y+z)}{\left(a+b+c\right)}=x+y+z\)

\(\Leftrightarrow x=a\left(x+y+z\right)\)

\(\Leftrightarrow y=b.\left(x+y+z\right)\)

\(\Leftrightarrow z=c.\left(x+y+z\right)\)

\(\Rightarrow xy+yz+zx=ab.\left(x+y+z\right)^2+bc.\left(x+y+z\right)^2+ca.\left(x+y+z\right)^2\)

\(\Leftrightarrow xy+yz+zx=\left(ab+bc+ca\right).\left(x+y+z\right)^2\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) suy ra: \(xy+yz+zx=0\)