Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Mincopxki \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\) ta được
\(VT\ge\sqrt{\left(x+y\right)^2+\left(\frac{1}{x}+\frac{1}{y}\right)^2}+\sqrt{z^2+\frac{1}{z^2}}\)
\(\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)
Áp dụng bđt Cô-si có
\(\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\ge9\sqrt[3]{\left(xyz\right)^2}+\frac{9}{\sqrt[3]{\left(xyz\right)^2}}\)
Đặt \(\sqrt[3]{\left(xyz\right)^2}=t\)
\(\Rightarrow0\le t=\sqrt[3]{\left(xyz\right)^2}\le\left(\frac{x+y+z}{3}\right)^2=\frac{1}{4}\)
Khi đó \(VT\ge\sqrt{9t+\frac{9}{t}}=\sqrt{3\left(48t+\frac{3}{t}-45t\right)}\ge\sqrt{3\left(2.\sqrt{3.48}-\frac{45}{4}\right)}=\frac{3\sqrt{17}}{2}\)
\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)
\(\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}=\sqrt{\left(x+y+z\right)^2+\frac{81}{16\left(x+y+z\right)^2}+\frac{1215}{16\left(x+y+z\right)^2}}\)
\(\ge\sqrt{2\sqrt{\frac{81\left(x+y+z\right)^2}{16\left(x+y+z\right)^2}}+\frac{1215}{16.\left(\frac{3}{2}\right)^2}}=\frac{3\sqrt{17}}{2}\)
Dấu "=" xảy ra khi \(z=y=z=\frac{1}{2}\)
Lời giải:
Sử dụng phương pháp hệ số bất định, ta sẽ chứng minh:
$\frac{1}{x^2+x}\geq \frac{5}{4}-\frac{3}{4}x(*)$
Thật vậy:
$(*)\Leftrightarrow \frac{1}{x^2+x}\geq \frac{5-3x}{4}$
$\Leftrightarrow 4\geq (5-3x)(x^2+x)$
$\Leftrightarrow 4-(5-3x)(x^2+x)\geq 0$
$\Leftrightarrow (x-1)^2(3x+4)\geq 0$ (luôn đúng với mọi $x>0$)
Hoàn toàn tương tự:
$\frac{1}{y^2+y}\geq \frac{5}{4}-\frac{3y}{4}$
$\frac{1}{z^2+z}\geq \frac{5}{4}-\frac{3z}{4}$
Cộng theo vế các BĐT trên ta có:
$\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\geq \frac{15}{4}-\frac{3}{4}(x+y+z)=\frac{3}{2}$ (đpcm)
Dấu "=" xảy ra khi $x=y=z=1$
Lời giải:
Áp dụng BĐT AM-GM ta có:
\(\text{VT}=x-\frac{x}{x^2+z}+y-\frac{y}{y^2+x}+z-\frac{z}{z^2+y}=(x+y+z)-\left(\frac{x}{x^2+z}+\frac{y}{y^2+x}+\frac{z}{z^2+y}\right)\)
\(\geq (x+y+z)-\left(\frac{x}{2\sqrt{x^2z}}+\frac{y}{2\sqrt{y^2x}}+\frac{z}{2\sqrt{z^2y}}\right)=(x+y+z)-\frac{1}{2}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)(1)\)
Từ giả thiết \(xy+yz+xz=3xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
Cauchy-Schwarz:
\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}\Rightarrow x+y+z\geq 3(2)\)
\(\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)^2\leq (\frac{1}{x}+\frac{1}{y}+\frac{1}{z})(1+1+1)=9\)
\(\Rightarrow \left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)\leq 3(3)\)
Từ \((1);(2);(3)\Rightarrow \text{VT}\geq 3-\frac{1}{2}.3=\frac{3}{2}\)
Mặt khác: \(\text{VP}=\frac{1}{2}(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=\frac{3}{2}\)
Do đó \(\text{VT}\geq \text{VP}\) (đpcm)
Dấu "=" xảy ra khi $x=y=z=1$
Ta có: \(\frac{x}{1+y^2}=x-\frac{xy^2}{1+y^2}\ge x-\frac{xy^2}{2y}=x-\frac{xy}{2}\left(1\right)\)
Tương tự: \(\frac{y}{1+z^2}\ge y-\frac{yz}{2}\left(2\right);\frac{z}{1+x^2}\ge z-\frac{zx}{2}\left(3\right)\)
Cộng theo vế của 3 bất đẳng thức (1), (2), (3), ta được: \(VT\ge\left(x+y+z\right)-\frac{xy+yz+zx}{2}\ge\left(x+y+z\right)-\frac{\frac{\left(x+y+z\right)^2}{3}}{2}=\frac{3}{2}=VP\)
Đẳng thức xảy ra khi x = y = z = 1
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{x^2+1}=1-\frac{x^2}{x^2+1}\ge1-\frac{x^2}{2x}=1-\frac{x}{2}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{1}{1+y^2}\ge1-\frac{y}{2};\frac{1}{1+z^2}\ge1-\frac{z}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge3-\frac{x+y+z}{2}=3-\frac{3}{2}=\frac{3}{2}\)
Khi \(x=y=z=1\)
\(\frac{P}{\sqrt{6}}=\sum\frac{1}{\sqrt{6}}.\frac{1}{\sqrt{2x^2+y^2+3}}\le\frac{1}{2}\sum\left(\frac{1}{6}+\frac{1}{2x^2+y^2+3}\right)\)
\(\frac{P}{\sqrt{6}}\le\frac{1}{4}+\frac{1}{2}\sum\frac{1}{2\left(x^2+1\right)+\left(y^2+1\right)}\le\frac{1}{4}+\frac{1}{2}\sum\frac{1}{4x+2y}\)
\(\frac{P}{\sqrt{6}}\le\frac{1}{4}+\frac{1}{4}\sum\frac{1}{x+x+y}\le\frac{1}{4}+\frac{1}{36}\left(\frac{2}{x}+\frac{1}{y}+\frac{2}{y}+\frac{1}{z}+\frac{2}{z}+\frac{1}{x}\right)\)
\(\frac{P}{\sqrt{6}}\le\frac{1}{4}+\frac{1}{12}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}\)
\(\Rightarrow P\le\frac{\sqrt{6}}{2}\)
Dấu "=" xảy ra khi \(x=y=z=1\)
\(\frac{x}{1+y^2}=\frac{x\left(1+y^2\right)-xy^2}{1+y^2}=x-\frac{xy^2}{1+y^2}\ge x-\frac{xy^2}{2y}=x-\frac{1}{2}xy\)
Tương tự: \(\frac{y}{1+z^2}\ge y-\frac{1}{2}yz\) ; \(\frac{z}{1+x^2}\ge z-\frac{1}{2}zx\)
Cộng vế với vế:
\(P\ge x+y+z-\frac{1}{2}\left(xy+yz+zx\right)\ge x+y+z-\frac{1}{6}\left(x+y+z\right)^2=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z=1\)
x,y,z dương , sorry đề bài thiếu