K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

từ cái đầu=>x-xy+y-xy=(1-x)(1-y)

<=>x+y-2xy=xy-x-y+1

<=>2(x+y)=3xy+1

\(\Leftrightarrow x+y=\frac{3xy+1}{2}\)

\(\sqrt{x^2-xy+y^2}=\sqrt{\left(x+y\right)^2-3xy}=\sqrt{\frac{9x^2y^2+6xy+1}{4}-3xy}=\sqrt{\frac{9x^2y^2-6xy+1}{4}}=\sqrt{\left(\frac{3xy-1}{2}\right)^2}\)với 3xy-1>0

\(\Rightarrow P=\frac{3xy+1}{2}+\frac{3xy-1}{2}=3xy\)

với 3xy-1<(=)0

\(\Rightarrow P=\frac{3xy+1}{2}+\frac{1-3xy}{2}=1\)

Câu 1: 

a: \(\Leftrightarrow2x^2-x-5< x^2+x-6\)

\(\Leftrightarrow x^2-2x+1< 0\)

hay \(x\in\varnothing\)

b: \(\Leftrightarrow x^2-5x-x+4>0\)

\(\Leftrightarrow x^2-6x+4>0\)

\(\Leftrightarrow\left(x-3\right)^2>5\)

hay \(\left[{}\begin{matrix}x>\sqrt{5}+3\\x< -\sqrt{5}+3\end{matrix}\right.\)

4 tháng 12 2017

Ta có: \(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)

\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)\(\ge4+2+1=7\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

Vậy \(\left(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\right)_{Min}=7\Leftrightarrow x=y=\frac{1}{2}\)

à nhầm, bạn pham trung thanh làm đúng rồi đấy mọi người ủng hộ bạn ấy nha

25 tháng 6 2015

Ta có: \(xy+yz+zx\le x^2+y^2+z^2\le3\)

\(\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\ge\frac{9}{1+xy+1+yz+1+zx}=\frac{9}{3+\left(xy+yz+zx\right)}\ge\frac{9}{3+3}=\frac{3}{2}\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)

 

NV
10 tháng 6 2020

Đề bài sai:

\(0< x< 1\Rightarrow x-1< 0\Rightarrow\frac{x}{x-1}< 0\)

Tương tự: \(\frac{y}{y-1}< 0\)

\(\Rightarrow\frac{x}{x-1}+\frac{y}{y-1}< 0\Rightarrow\frac{x}{x-1}+\frac{y}{y-1}=1\) là hoàn toàn vô lý

8 tháng 3 2018

Hình như đề sai rùi bạn ơi !

Phải sửa xy/x^2+y^2 thành x^2+y^2/xy hoặc cái gì khác

Vì xy/x^2+y^2 chỉ có GTLN chứ ko có GTNN đâu

Mk nói có gì sai thì thông cảm nha !

8 tháng 3 2018

đề không sai đâu bạn à. Đây là đề toán chuyên ở tỉnh mình mà