Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-1}}{y}\le1\)
Mà \(x=\left(x-1\right)+1\ge2\sqrt{x-1}\)
\(\Rightarrow\frac{\sqrt{x-1}}{x}\le\frac{\sqrt{x-1}}{2\sqrt{x-1}}=\frac{1}{2}\)
Tương tự: \(\frac{\sqrt{y-1}}{y}\le\frac{1}{2}\)
Vậy \(\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-1}}{y}\le1\left(đpcm\right)\)
Nếu để ý,bài này Cô si "ngược" là ra =))
Ta có: \(\sqrt{y-1}=\sqrt{1\left(y-1\right)}\le\frac{1+y-1}{2}=\frac{y}{2}\)
Tương tự: \(\sqrt{x-1}\le\frac{x}{2}\)
Do đó: \(x\sqrt{y-1}+y\sqrt{x-1}\le x.\frac{y}{2}+y.\frac{x}{2}=\frac{xy}{2}+\frac{xy}{2}=\frac{2xy}{2}=xy^{\left(đpcm\right)}\)
1/ Sửa đề: \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow\) \(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)-2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=0\)
\(\Leftrightarrow\) \(\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{zx}+x\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2=0\)
Với mọi x, y, z ta luôn có: \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0;\) \(\left(\sqrt{y}-\sqrt{z}\right)^2\ge0;\) \(\left(\sqrt{z}-\sqrt{x}\right)^2\ge0;\)
\(\Rightarrow\) \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)
Do đó dấu "=" xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x}-\sqrt{y}\right)^2=0\\\left(\sqrt{y}-\sqrt{z}\right)^2=0\\\left(\sqrt{z}-\sqrt{x}\right)^2=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\) \(\Leftrightarrow\) x = y = z
3/ Đây là BĐT Cô-si cho 2 số dương a và b, ta biến đổi tương đương để chứng minh
\(a+b\ge2\sqrt{ab}\) \(\Leftrightarrow\) \(\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\) \(\Leftrightarrow\) \(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\) \(a^2+b^2+2ab-4ab\ge0\) \(\Leftrightarrow\) \(a^2-2ab+b^2\ge0\) \(\Leftrightarrow\) \(\left(a-b\right)^2\ge0\)
Đẳng thức xảy ra khi và chỉ khi a = b
2/ Vì x > y và xy = 1 áp dụng BĐT Cô-si ta được:
\(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{1}{x-y}\ge2\sqrt{\left(x-y\right).\frac{1}{x-y}}=2\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x>y\\xy=1\\x-y=\frac{1}{x-y}\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{1+\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{cases}}\)
Áp dụng Bđt \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
Ta có:
\(A^2\le6\left(x+y+z\right)=6\)
\(\Leftrightarrow A\le\sqrt{6}\)(Đpcm)
\(VT=\frac{\sqrt{x}}{x^2+y+2y\sqrt{x}}+\frac{\sqrt{y}}{y^2+x+2x\sqrt{y}}\le\frac{\sqrt{x}}{2x\sqrt{y}+2y\sqrt{x}}+\frac{\sqrt{y}}{2y\sqrt{x}+2x\sqrt{y}}\)
\(=\frac{\sqrt{x}+\sqrt{y}}{2\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}=\frac{1}{2\sqrt{xy}}\)
Có \(2=\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}=\frac{2}{\sqrt{xy}}\)\(\Leftrightarrow\)\(\frac{1}{2\sqrt{xy}}\le\frac{1}{2}\)
\(\Rightarrow\)\(VT\le\frac{1}{2}\) ( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x^2=y\\y^2=x\\\frac{1}{x}=\frac{1}{y}\end{cases}\Leftrightarrow x=y}\)
...
Theo bất đẳng thức Cô-Si ta có \(xy=\left(x-1\right)y+y\ge2\sqrt{\left(x-1\right)y\cdot y}=2y\sqrt{x-1}.\)
Tương tự \(xy=\left(y-1\right)x+x\ge2\sqrt{\left(y-1\right)x\cdot x}=2x\sqrt{y-1}.\)
Cộng hai bất đẳng thức lại cho ta \(2xy\ge2y\sqrt{x-1}+2x\sqrt{y-1}\Leftrightarrow xy\ge x\sqrt{y-1}+y\sqrt{x-1}.\) (ĐPCM).