K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2020

Áp dụng BĐT Cô-si ta có:

\(xy\left(x^2+y^2\right)=\frac{1}{2}.2xy\left(x^2+y^2\right)\le\frac{1}{2}.\frac{\left(2xy+x^2+y^2\right)^2}{4}\)

\(=\frac{1}{2}.\frac{\left(x+y\right)^4}{4}=2\)

Dấu = xảy ra khi x = y = 1

https://diendantoanhoc.net/topic/119823-cho-xy2-ch%E1%BB%A9ng-minh-r%E1%BA%B1ng-xyx2-y2%E2%80%8B-2/

2 tháng 2 2020

Bài này áp dụng BĐT Cô-si nhưng thử thế này:

Ta thấy x,y đều là số nguyên dương nên có 2 TH:

=> x+y=2=>0<xy<1(1)

Nếu 2xy(x2+y2<  1 (2)

=>0<2xy(x2+y2< \(\frac{\left(x+4\right)}{4}\) =4

=> 0< xy (x+ y2)<2 

Nhân (1) và (2) theo vế:

Ta có: x2y2 (x2+ y2)<2

đpcm.

Dấu "=" xảy ra khi x=y=1

2 tháng 2 2020
  • @Achana cậu đang thắc mắc chỗ 2xy(x2+y2 1
  • =)) chỗ đó cậu hãy sửa nếu là ta có vì đó là 1 TH còn ở trên nếu ở dòng thứ 2 thì cậu viết là Ta thấy x,y đều là số nguyen dương nên ta có 2 TH:
  • Ta có:
1 tháng 2 2020

a/VT=x5+x^4.y+x^3.y^2+x^2.y^4+x.y^4-x^4.y-x^3.y^2-x^2.y^3-x.y^4-y^5

=x^5-y^5=VP

=>dpcm

22 tháng 6 2018

\(a)\) Ta có : 

\(A=a^2+b^2=\left(a+b\right)^2-2ab=7^2-2.10=49-20=29\)

Vậy \(A=29\)

\(B=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=7\left(29-10\right)=7.19=133\)

Vậy \(B=133\)

\(b)\) Đặt \(A=-x^2+x-1\) ta có : 

\(-A=x^2-x+1\)

\(-A=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)

\(-A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

\(A=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le\frac{3}{4}< 0\)

Vậy \(A< 0\) với mọi số thực x 

Chúc bạn học tốt ~ 

19 tháng 7 2015

 

x+ y2 + z2 = xy + yz + zx 

=>2.(x2+y2+z2)=2.(xy+yz+zx)

<=>2x2+2y2+2z2=2xy+2yz+2zx

<=>2x2+2y2+2z2-2xy-2yz-2zx=0

<=>x2-2xy+y2+y2-2yz+z2+z2-2zx+x2=0

<=>(x-y)2+(y-z)2+(z-x)2=0

<=>x-y=0 và y-x=0 và z-x=0

<=>x=y và y=x và z=x

Vậy x=y=z

 

19 tháng 7 2015

Chứng minh phản chứng.      

6 tháng 6 2018

a/ \(x^2+xy+y^2+1\)=\(\left(x^2+2x\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2\right)+\dfrac{3y^2}{4}+1\)

=\(\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\) \(\ge\)0

vậy....

b

17 tháng 7 2015

mình ko chắc nó đúng,bạn tham khảo nhé

-nếu x=y=z      <=>    xy+yz+zx=x2+y2+z2

<=>x2+y2+z2=xy+yz+zx         1

-nếu x2+y2+z2=xy+yz+zx          <=>        2x2+2y2+2z2=2xy+2yz+2zx

<=>2x2+2y2+2z2-2xy-2yz-2zx=0

<=>(x-y)2+(y-z)2+(z-x)2=0                 (hằng đẳng thức)

=>x=y=z                                  2

Từ 1 và 2=>x2+y2+z2=xy+yz+zx   <=>x=y=z

 

1 tháng 3 2017

Dung roi

3 tháng 7 2016

\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)

\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)

\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)

ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)

\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)

Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)

T i c k cho mình 1 cái nha mới bị trừ 50 đ