Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này áp dụng BĐT Cô-si nhưng thử thế này:
Ta thấy x,y đều là số nguyên dương nên có 2 TH:
=> x+y=2=>0<xy<1(1)
Nếu 2xy(x2+y2) < 1 (2)
=>0<2xy(x2+y2) < \(\frac{\left(x+4\right)}{4}\) =4
=> 0< xy (x2 + y2)<2
Nhân (1) và (2) theo vế:
Ta có: x2y2 (x2+ y2)<2
đpcm.
Dấu "=" xảy ra khi x=y=1
a/VT=x5+x^4.y+x^3.y^2+x^2.y^4+x.y^4-x^4.y-x^3.y^2-x^2.y^3-x.y^4-y^5
=x^5-y^5=VP
=>dpcm
\(a)\) Ta có :
\(A=a^2+b^2=\left(a+b\right)^2-2ab=7^2-2.10=49-20=29\)
Vậy \(A=29\)
\(B=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=7\left(29-10\right)=7.19=133\)
Vậy \(B=133\)
\(b)\) Đặt \(A=-x^2+x-1\) ta có :
\(-A=x^2-x+1\)
\(-A=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)
\(-A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
\(A=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le\frac{3}{4}< 0\)
Vậy \(A< 0\) với mọi số thực x
Chúc bạn học tốt ~
x2 + y2 + z2 = xy + yz + zx
=>2.(x2+y2+z2)=2.(xy+yz+zx)
<=>2x2+2y2+2z2=2xy+2yz+2zx
<=>2x2+2y2+2z2-2xy-2yz-2zx=0
<=>x2-2xy+y2+y2-2yz+z2+z2-2zx+x2=0
<=>(x-y)2+(y-z)2+(z-x)2=0
<=>x-y=0 và y-x=0 và z-x=0
<=>x=y và y=x và z=x
Vậy x=y=z
a/ \(x^2+xy+y^2+1\)=\(\left(x^2+2x\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2\right)+\dfrac{3y^2}{4}+1\)
=\(\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\) \(\ge\)0
vậy....
b
mình ko chắc nó đúng,bạn tham khảo nhé
-nếu x=y=z <=> xy+yz+zx=x2+y2+z2
<=>x2+y2+z2=xy+yz+zx 1
-nếu x2+y2+z2=xy+yz+zx <=> 2x2+2y2+2z2=2xy+2yz+2zx
<=>2x2+2y2+2z2-2xy-2yz-2zx=0
<=>(x-y)2+(y-z)2+(z-x)2=0 (hằng đẳng thức)
=>x=y=z 2
Từ 1 và 2=>x2+y2+z2=xy+yz+zx <=>x=y=z
\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)
\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)
\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)
ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)
\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)
Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)
T i c k cho mình 1 cái nha mới bị trừ 50 đ
Áp dụng BĐT Cô-si ta có:
\(xy\left(x^2+y^2\right)=\frac{1}{2}.2xy\left(x^2+y^2\right)\le\frac{1}{2}.\frac{\left(2xy+x^2+y^2\right)^2}{4}\)
\(=\frac{1}{2}.\frac{\left(x+y\right)^4}{4}=2\)
Dấu = xảy ra khi x = y = 1
https://diendantoanhoc.net/topic/119823-cho-xy2-ch%E1%BB%A9ng-minh-r%E1%BA%B1ng-xyx2-y2%E2%80%8B-2/