K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2019

Áp dụng BĐT Cauchy-schwarz ta có:

\(8\ge x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow x+y\ge4\)

Dấu " = " xảy ra <=> x=y=2

Áp dụng BĐT Cauchy-schwarz ta có:

\(A\ge\frac{4}{x+y}\ge\frac{4}{4}=1\)

Dấu " = " xảy ra <=> x=y=2

22 tháng 5 2019

Hình như anh kudo shinichi ngược dấu một xíu thì phải ạ: \(8\ge\frac{\left(x+y\right)^2}{2}\Rightarrow\left(x+y\right)\le4\) chứ ạ?Dẫn đến 

khúc sau ngược dấu.Nếu em sai thì xin thông ảm cho ạ. Lời giải của em đây:

\(A\ge\frac{4}{x+y}=\frac{16}{4x+4y}\ge\frac{16}{x^2+4+y^2+4}\) (BĐT Cô si hay AM-GM gì đó: \(x^2+4\ge2\sqrt{x^2.4}=2.2.x=4x;...\))

\(=\frac{16}{8+8}=1\).Dấu "=" xảy ra khi x = y = 2.

Vậy min A = 1 khi x =y = 2

20 tháng 5 2017

Theo đề bài ta có

\(1=x+y\ge2\sqrt{xy}\)

\(\Leftrightarrow xy\le\frac{1}{4}\)

\(A=\left(x+\frac{1}{y}\right)^2+\left(y+\frac{1}{x}\right)^2\)

\(=x^2+y^2+\frac{2y}{x}+\frac{2x}{y}+\frac{1}{x^2}+\frac{1}{y^2}\)

\(=\left(x^2+\frac{1}{16x^2}\right)+\left(y^2+\frac{1}{16y^2}\right)+2\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{15}{16}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\)

\(\ge\frac{1}{2}+\frac{1}{2}+4+\frac{15}{16}.\frac{2}{xy}\)

\(\ge5+\frac{15}{16}.\frac{2}{\frac{1}{4}}=\frac{25}{2}\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

NV
15 tháng 5 2020

\(A\ge\frac{\left(x+y+z\right)^2}{3}+\frac{9}{x+y+z}=\frac{\left(x+y+z\right)^2}{3}+\frac{9}{8\left(x+y+z\right)}+\frac{9}{8\left(x+y+z\right)}+\frac{27}{4\left(x+y+z\right)}\)

\(A\ge3\sqrt[3]{\frac{81\left(x+y+z\right)^2}{3.64\left(x+y+z\right)\left(x+y+z\right)}}+\frac{27}{4.\frac{3}{2}}=\frac{27}{4}\)

\(A_{min}=\frac{27}{4}\) khi \(x=y=z=\frac{1}{2}\)

NV
20 tháng 5 2019

Ta có \(2x^2+2xy+y^2-2x\le8\Leftrightarrow\left(x+y\right)^2+\left(x-1\right)^2\le9\)

\(\Rightarrow\left(x+y\right)^2\le9-\left(x-1\right)^2\le9\)

\(\Rightarrow x+y\le3\)

\(P=\frac{2}{x}+2x+\frac{4}{y}+y-4\left(x+y\right)\ge2\sqrt{\frac{4x}{x}}+2\sqrt{\frac{4y}{y}}-4.3=-4\)

\(\Rightarrow P_{min}=-4\) khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

2 tháng 9 2019

a, Áp dụng BĐT cosi với ba số dương có:

\(\frac{1}{xy}+x+y\ge3\sqrt[3]{\frac{1}{xy}.x.y}=3\sqrt[3]{1}=3\)

=> \(\frac{1}{xy}\ge3-x-y=3-2=1\)

Dấu"=" xảy ra <=> x=y=1

Vậy min \(\frac{1}{xy}=1\) <=> x=y=1

b, Với x,y>0 .Áp dụng bđt svac-xơ có

\(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}=\frac{4}{2}=2\)

Dấu "=" xảy ra <=> x=y=1

2 tháng 9 2019

c,Có \(\frac{1}{xy}\ge1\) <=> \(1-xy\ge0\)

x2+y2=(x+y)2-2xy=4-2xy=2+2(1-xy) \(\ge2+2.0=2\)

Dấu"=" xảy ra <=> x=y=1

16 tháng 5 2020

Ta có:

 \(A=\left(x^2+\frac{1}{8x}+\frac{1}{8x}\right)+\left(y^2+\frac{1}{8y}+\frac{1}{8y}\right)+\left(z^2+\frac{1}{8z}+\frac{1}{8z}\right)+\frac{6}{8}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\ge3\sqrt[3]{x^2.\frac{1}{8x}.\frac{1}{8x}}+3\sqrt[3]{y^2.\frac{1}{8y}.\frac{1}{8y}}+3\sqrt[3]{z^2.\frac{1}{8z}.\frac{1}{8z}}+\frac{6}{8}\frac{9}{x+y+z}\)

\(=\frac{3}{4}+\frac{3}{4}+\frac{3}{4}+\frac{6}{8}.\frac{9}{\frac{3}{2}}=\frac{27}{4}\)

Dấu "=" xảy ra <=> x = y = z = 1/2

Vậy min A = 27/4 tại x = y = z = 1/2 

29 tháng 12 2019

Ta có :  \(A=x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}+2\left(\frac{x}{y}+\frac{y}{x}\right)\)

\(A=4+\frac{x^2+y^2}{x^2y^2}+\frac{2.\left(x^2+y^2\right)}{xy}=4+\frac{4}{x^2y^2}+\frac{8}{xy}\)

\(A=4\left(\frac{1}{xy}+1\right)^2\)

Mặt khác : \(xy\le\frac{x^2+y^2}{2}=2\Rightarrow\frac{1}{xy}\ge\frac{1}{2}\)

\(\Rightarrow A\ge4\left(\frac{1}{2}+1\right)^2=9\)

Vậy Min A = 9 khi x = y = \(\sqrt{2}\)

14 tháng 6 2018

\(1>=\left(x+y\right)^2>=\left(2\sqrt{xy}\right)^2=4xy\Rightarrow1>=4xy\Rightarrow\frac{1}{2}>=2xy\)(bđt cosi)

\(\Rightarrow\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}>=\frac{4}{x^2+2xy+y^2}+\frac{1}{\frac{1}{2}}\)

\(=\frac{4}{\left(x+y\right)^2}+2>=\frac{4}{1^2}+2=4+2=6\)

dấu = xảy ra khi \(x=y=\frac{1}{2}\)

vậy min \(\frac{1}{x^2+y^2}+\frac{1}{xy}=6\)khi \(x=y=\frac{1}{2}\)

21 tháng 5 2015

1.  x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)

2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)

 

21 tháng 5 2015

3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)

áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)