Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x;y>0\\x+y=1\end{matrix}\right.\)\(\Rightarrow0< xy=t\le\dfrac{1}{4}\)
\(x^4+y^4=\left(1-2t\right)^2-2t\)
\(8\left(x^4+y^4\right)+\dfrac{1}{xy}\ge5\Leftrightarrow A=8\left[\left(1-2t\right)^2-2t\right]+\dfrac{1}{t}-5\ge0\)
\(\Leftrightarrow16t^2-32t+\dfrac{1}{t}+3\ge0\)\(\Leftrightarrow16t^3-32t^2+3t+1\ge0\)
<=>\(16t^3-4t^2-28t^2+7t-4t+1\ge0\)
\(\Leftrightarrow4t^2\left(4t-1\right)-7t\left(4t-1\right)-\left(4t-1\right)\ge0\)
\(\Leftrightarrow\left(4t-1\right)\left(4t^2-7t-1\right)\ge0\)
\(\Leftrightarrow B=\left(4t-1\right)\left(8t-7-\sqrt{65}\right)\left(8t-7+\sqrt{65}\right)\ge0\)
\(0< t\le\dfrac{1}{4}\Rightarrow\)\(\left\{{}\begin{matrix}4t-1\le0\\8t-7+\sqrt{65}>0\\8t-7-\sqrt{5}< 0\end{matrix}\right.\) \(\Rightarrow B\ge0\)
mọi phép biến đổi <=> => dpcm
Sử dụng BĐT Cauchy-Schwarz nhiều lần, cộng với BĐT phụ \(\dfrac{1}{xy}\ge\dfrac{4}{\left(x+y\right)^2}\), ta có:
\(8\left(x^4+y^4\right)+\dfrac{1}{xy}\ge\dfrac{8\left(x^2+y^2\right)^2}{2}+\dfrac{4}{\left(x+y\right)^2}=4\left(x^2+y^2\right)^2+4\ge4\left[\dfrac{\left(x+y\right)^2}{2}\right]^2+4=5\)
Đẳng thức xảy ra khi \(x=y=\dfrac{1}{2}\)
có bđt: a²+b² ≥ (a+b)²/2 (*)
(*) <=> 2a²+2b² ≥ a²+b²+2ab <=> a²+b²-2ab ≥ 0 <=> (a-b)² ≥ 0 bđt đúng, dấu "=" khi a = b
- - -
ad (*) 2 lần liên tiếp:
x^4 + y^4 ≥ (x²+y²)²/2 ≥ [(x+y)²/2]²/2 = (x+y)^4 /8 = 1/8
=> 8(x^4 + y^4) ≥ 1 (*)
mặt khác, có bđt: (x-y)² ≥ 0 <=> x²+y² ≥ 2xy <=> x²+y²+2xy ≥ 4xy <=> (x+y)² ≥ 4xy
=> 1/xy ≥ 4/(x+y)² = 4 (**)
(*) + (**): 8(x^4 + y^4) + 1/xy ≥ 1+4 = 5 (đpcm) dấu "=" khi x = y = 1/2
\(x+y=1\ge2\sqrt{xy}\Leftrightarrow xy\le\frac{1}{4}\)
\(A=8\left(x^4+y^4\right)+\frac{1}{xy}\ge16x^2y^2+\frac{1}{xy}=16x^2y^2+\frac{1}{4xy}+\frac{1}{4xy}+\frac{1}{2xy}\ge3\sqrt[3]{16x^2y^2.\frac{1}{4xy}.\frac{1}{4xy}}+\frac{1}{2.\frac{1}{4}}=5\)
Dâu ' = ' xảy ra khi x =y = 1/2
Bài 1. Ta có : \(xy+\dfrac{1}{xy}=16xy-15xy+\dfrac{1}{xy}\)
Áp dụng BĐT Cauchy cho các số dương , ta có :
\(x+y\) ≥ \(2\sqrt{xy}\)
⇔ \(\left(x+y\right)^2\) ≥ \(4xy\)
⇔ \(\dfrac{\left(x+y\right)^2}{4}=\dfrac{1}{4}\) ≥ xy
⇔ - 15xy ≥ \(\dfrac{1}{4}.\left(-15\right)=\dfrac{-15}{4}\)
CMTT , \(16xy+\dfrac{1}{xy}\) ≥ \(2\sqrt{16xy.\dfrac{1}{xy}}=2.\sqrt{16}=8\)
⇒ \(16xy+\dfrac{1}{xy}\) - 15xy ≥ \(8-\dfrac{15}{4}=\dfrac{17}{4}\)
Với mọi x,y >0 có \(\left(x+y\right)^2\ge4xy\)
=> \(1\ge4xy\) (do x+y=1) <=> \(\frac{1}{xy}\ge4\)
Lại có \(x^2+y^2\ge2xy\)
<=> \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2=1\)
<=> \(x^2+y^2\ge\frac{1}{2}\)
Có \(x^4+y^4\ge2x^2y^2\)
<=> \(2\left(x^4+y^4\right)\ge\left(x^2+y^2\right)^2\ge\left(\frac{1}{2}\right)^2\)
<=> \(8\left(x^4+y^4\right)\ge\frac{1}{4}.4=1\)
=> \(8\left(x^4+y^4\right)+\frac{1}{xy}\ge1+4=5\)
Dấu "=" xảy ra <=> x=y=\(\frac{1}{2}\)
\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2=1\)
Cho mik hỏi sao \(\left(x^2+y^2\right)^2\)≥ \(\left(\frac{1}{2}\right)^2\) vậy bạn
\(P=\dfrac{1}{2\left(x^2+y^2\right)}+\dfrac{4}{xy}+2xy\)
\(\Leftrightarrow2P=\dfrac{1}{x^2+y^2}+\dfrac{8}{xy}+4xy\)
\(\Leftrightarrow2P=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{4xy}+4xy+\dfrac{29}{4xy}\)
Áp dụng BĐT AM - GM , ta có :
\(\Leftrightarrow\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{4xy}+4xy+\dfrac{29}{4xy}\ge\dfrac{2}{\sqrt{\left(x^2+y^2\right)2xy}}+2\sqrt{\dfrac{1}{4xy}.4xy}+\dfrac{29}{4xy}\)
\(\Leftrightarrow2P\ge\)\(\dfrac{2}{\sqrt{\left(x^2+y^2\right)2xy}}+2+\dfrac{29}{4xy}\ge\dfrac{4}{\left(x+y\right)^2}+2+\dfrac{29}{\left(x+y\right)^2}\)
\(\Leftrightarrow2P\ge2+4+29=35\)
\(\Leftrightarrow P\ge\dfrac{35}{2}\)
\(\Rightarrow P_{Min}=\dfrac{35}{2}\Leftrightarrow x=y=\dfrac{1}{2}\)
Áp dụng BĐT Cô-si :
\(\frac{1}{xy}\ge\frac{1}{\frac{\left(x+y\right)^2}{4}}\ge\frac{1}{\frac{1}{4}}=4\)
Do đó BĐT cần chứng minh \(\Leftrightarrow8\left(x^4+y^4\right)+4\ge5\)
Ta cần chứng minh BĐT sau là đủ : \(8\left(x^4+y^4\right)\ge1\)
Thật vậy: Áp dụng BĐT Cô-si :
\(x^4+\frac{1}{16}\ge\frac{x^2}{2};y^4+\frac{1}{16}\ge\frac{y^2}{2}\)
Cộng vế : \(x^4+y^4+\frac{1}{8}\ge\frac{x^2+y^2}{2}\ge\frac{\frac{\left(x+y\right)^2}{2}}{2}\ge\frac{\frac{1}{2}}{2}=\frac{1}{4}\)
\(\Leftrightarrow x^4+y^4\ge\frac{1}{4}-\frac{1}{8}=\frac{1}{8}\)
\(\Leftrightarrow8\left(x^4+y^4\right)\ge1\)
Ta có đpcm.
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)