Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT phụ \(4xy\le\left(x+y\right)^2\le1\)\(\Leftrightarrow xy\le\frac{1}{4}\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
Có \(K=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)\(=x^2+2x.\frac{1}{x}+\frac{1}{x^2}+y^2+2y.\frac{1}{y}+\frac{1}{y^2}\)\(=x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}+4\)
Áp dụng BĐT Cô-si cho 2 số dương \(x^2\)và \(y^2\), ta có: \(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)
Tương tự, ta có \(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{y^2}}=\frac{2}{xy}\)
Từ đó \(K\ge2xy+\frac{2}{xy}+4\)\(=32xy+\frac{2}{xy}-30xy+4\)
Áp dụng BĐT Cô-si cho 2 số dương \(32xy\)và \(\frac{2}{xy}\), ta có: \(32xy+\frac{2}{xy}\ge2\sqrt{32xy.\frac{2}{xy}}=16\)
Lại có \(xy\le\frac{1}{4}\Leftrightarrow-xy\ge-\frac{1}{4}\)nên \(K\ge16-\frac{30}{4}+4=\frac{25}{2}\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
Vậy GTNN của K là \(\frac{25}{2}\)khi \(x=y=\frac{1}{2}\)
\(K=x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}+4=x^2+\dfrac{1}{16x^2}+y^2+\dfrac{1}{16y^2}+\dfrac{15}{16x^2}+\dfrac{15}{16y^2}+4\ge\dfrac{1}{2}+\dfrac{1}{2}+4+\dfrac{2.15}{16xy}=5+\dfrac{2.15}{16xy}\)
\(x+y\ge2\sqrt{xy};\Rightarrow2\sqrt{xy}\le x+y\le1\Rightarrow2\sqrt{xy}\le1\Leftrightarrow xy\le\dfrac{1}{4}\)
\(\Rightarrow K\ge5+\dfrac{2.15}{16.\dfrac{1}{4}}=\dfrac{25}{2}\)
A=\(1+\dfrac{1}{y}+x+\dfrac{x}{y}+1+\dfrac{1}{x}+y+\dfrac{y}{x}\)
A= \(\left(x+\dfrac{1}{2x}\right)+\left(y+\dfrac{1}{2y}\right)+\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+2\)
Áp Dụng BĐT Cô si ta có:
\(\left(x+\dfrac{1}{2x}\right)\ge\sqrt{2}\); \(\left(y+\dfrac{1}{2y}\right)\ge\sqrt{2}\); \(\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\ge2\)
\(\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge2\sqrt{\dfrac{1}{2x.2y}}=\dfrac{1}{\sqrt{xy}}\ge\dfrac{\sqrt{2}}{\sqrt{x^2+y^2}}=\sqrt{2}\)
suy ra A\(\ge4+3\sqrt{2}\)
Dấu = xảy ra
\(\left\{{}\begin{matrix}x=y\\x=\dfrac{1}{2x}\\y=\dfrac{1}{2y}\end{matrix}\right.\)
\(\Leftrightarrow\)x=y=\(\dfrac{\sqrt{2}}{2}\)
Vậy Min A=4+3\(\sqrt{2}\) khi x=y=\(\dfrac{\sqrt{2}}{2}\)
Trước hết ta có \(\dfrac{\left(x+y\right)^2}{2}\le x^2+y^2\Rightarrow x+y\le\sqrt{2\left(x^2+y^2\right)}=\sqrt{2}\)
\(A=1+\dfrac{1}{y}+x+\dfrac{x}{y}+1+\dfrac{1}{x}+y+\dfrac{y}{x}\)
\(A=2+x+y+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{x}{y}+\dfrac{y}{x}\ge2+x+y+\dfrac{4}{x+y}+2\sqrt{\dfrac{x}{y}.\dfrac{y}{x}}\)
\(\Rightarrow A\ge4+x+y+\dfrac{4}{x+y}=4+x+y+\dfrac{2}{x+y}+\dfrac{2}{x+y}\)
\(\Rightarrow A\ge4+2\sqrt{\left(x+y\right).\dfrac{2}{\left(x+y\right)}}+\dfrac{2}{\sqrt{2}}=4+3\sqrt{2}\)
\(\Rightarrow A_{min}=4+3\sqrt{2}\) khi \(x=y=\dfrac{1}{\sqrt{2}}\)
Áp dụng bđt Cauchy-Schwarz:
\(A=\dfrac{1}{\sqrt{x\left(y+2z\right)}}+\dfrac{1}{\sqrt{y\left(z+2x\right)}}+\dfrac{1}{\sqrt{z\left(x+2y\right)}}\)
\(\ge\dfrac{\left(1+1+1\right)^2}{\sqrt{x\left(y+2z\right)}+\sqrt{y\left(z+2x\right)}+\sqrt{z\left(x+2y\right)}}\)
\(=\dfrac{9}{\sqrt{x\left(y+2z\right)}+\sqrt{y\left(z+2x\right)}+\sqrt{z\left(x+2y\right)}}\)
Áp dụng liên tiếp Bunyakovsky và AM-GM:
\(\left(\sqrt{x\left(y+2z\right)}+\sqrt{y\left(z+2x\right)}+\sqrt{z\left(x+2y\right)}\right)^2\)
\(\le\left(1^2+1^2+1^2\right)\left[x\left(y+2z\right)+y\left(z+2x\right)+z\left(x+2y\right)\right]\)
\(=3.3\left(xy+yz+xz\right)\)
Mà \(3\left(xy+yz+xz\right)\le\left(x+y+z\right)^2=3\)
\(3.3\left(xy+yz+xz\right)\le3.3=9\)
\(\Leftrightarrow\sqrt{x\left(y+2z\right)}+\sqrt{y\left(z+2x\right)}+z\sqrt{\left(x+2y\right)}\le\sqrt{9}=3\)
\(\Leftrightarrow A\ge\dfrac{9}{3}=3."="\Leftrightarrow x=y=z=\dfrac{1}{\sqrt{3}}\)
có x+y=1 =>\(\left\{{}\begin{matrix}x-1=-y\\y-1=-x\end{matrix}\right.\)khí đó ta có biểu thức tương đương :
\(\dfrac{\left(x^2-1\right)\left(y^2-1\right)}{x^2y^2}=\dfrac{\left(x-1\right)\left(x+1\right)\left(y-1\right)\left(y+1\right)}{x^2y^2}=\dfrac{\left(-y\right)\left(x+1\right)\left(-x\right)\left(y+1\right)}{x^2y^2}=\dfrac{\left(x+1\right)\left(y+1\right)}{xy}=\dfrac{xy+x+y+1}{xy}=1+\dfrac{2}{xy}\)mà 1=x+y và x+y\(\ge\)2\(\sqrt{xy}\)=> (x+y)2 \(\ge\)4xy do đó 1= (x+y)2 \(\ge\)4xy
=> \(\dfrac{1}{4xy}\ge\dfrac{1}{\left(x+y\right)^2}=>\dfrac{1}{xy}\ge\dfrac{4}{\left(x+y\right)^2}=>\dfrac{2}{xy}\ge8\)=> biểu thức đã cho có GTNN là 9 khi x=y=\(\dfrac{1}{2}\)
Bài 1:
\((x,y,z)=(\frac{2a^2}{bc}; \frac{2b^2}{ca}; \frac{2c^2}{ab})\) (\(a,b,c>0\) )
Khi đó:
\(\text{VT}=\frac{\frac{4a^4}{b^2c^2}}{\frac{4a^4}{b^2c^2}+\frac{4a^2}{bc}+1}+\frac{\frac{4b^4}{c^2a^2}}{\frac{4b^4}{c^2a^2}+\frac{4b^2}{ca}+4}+\frac{\frac{4c^4}{a^2b^2}}{\frac{4c^4}{a^2b^2}+\frac{4c^2}{ab}+4}\)
\(=\frac{a^4}{a^4+a^2bc+b^2c^2}+\frac{b^4}{b^4+b^2ac+a^2c^2}+\frac{c^4}{c^4+c^2ab+a^2b^2}\)
\(\geq \frac{(a^2+b^2+c^2)^2}{a^4+b^4+c^4+a^2bc+b^2ac+c^2ab+(a^2b^2+b^2c^2+c^2a^2)}\)
(Áp dụng BĐT Cauchy_Schwarz)
Theo BĐT Cauchy dễ thấy:
\(a^2b^2+b^2c^2+c^2a^2\geq a^2bc+b^2ca+c^2ab\)
\(\Rightarrow \text{VT}\geq \frac{(a^2+b^2+c^2)^2}{a^4+b^4+c^4+2(a^2b^2+b^2c^2+c^2a^2)}=\frac{(a^2+b^2+c^2)^2}{(a^2+b^2+c^2)^2}=1\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$ hay $x=y=z=2$
Bài 2:
Đặt \((x,y,z)=\left(\frac{a}{b};\frac{b}{c}; \frac{c}{a}\right)\)
Ta có:
\(\text{VT}=\left(\frac{a}{b}+\frac{c}{b}-1\right)\left(\frac{b}{c}+\frac{a}{c}-1\right)\left(\frac{c}{a}+\frac{b}{a}-1\right)\)
\(=\frac{(a+c-b)(b+a-c)(c+b-a)}{abc}\)
Áp dụng BĐT Cauchy:
\((a+c-b)(b+a-c)\leq \left(\frac{a+c-b+b+a-c}{2}\right)^2=a^2\)
\((b+a-c)(c+b-a)\leq \left(\frac{b+a-c+c+b-a}{2}\right)^2=b^2\)
\((a+c-b)(c+b-a)\leq \left(\frac{a+c-b+c+b-a}{2}\right)^2=c^2\)
Nhân theo vế:
\(\Rightarrow [(a+c-b)(b+a-c)(c+b-a)]^2\leq (abc)^2\)
\(\Rightarrow (a+c-b)(b+a-c)(c+b-a)\leq abc\)
\(\Rightarrow \text{VT}\leq 1\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$ hay $x=y=z=1$
a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3
MInA=3<=>x=y=z=1
b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)