K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2023

a) Để tính giá trị của biểu thức x^4 + y^4, ta có thể sử dụng công thức Newton về tổng lũy thừa của một đa thức. Theo công thức Newton, ta có: x^4 + y^4 = (x^2 + y^2)^2 - 2x^2y^2 Từ đó, ta có thể tính giá trị của biểu thức x^4 + y^4 theo a và b: x^4 + y^4 = (a^2 - 2b)^2 - 2(a - 2b)b b) Tương tự, để tính giá trị của biểu thức x^5 + y^5, ta có thể sử dụng công thức Newton về tổng lũy thừa của một đa thức. Theo công thức Newton, ta có: x^5 + y^5 = (x + y)(x^4 - x^3y + x^2y^2 - xy^3 + y^4) Từ đó, ta có thể tính giá trị của biểu thức x^5 + y^5 theo a và b: x^5 + y^5 = (a)(a^4 - a^3b + a^2b^2 - ab^3 + b^4)

23 tháng 11 2023

ccc

27 tháng 7 2019

a) \(x^2+y^2=x^2+2xy+y^2-2xy\)

\(=\left(x+y\right)^2-2xy=a^2-2b\)

27 tháng 7 2019

b) \(x^3+y^3=\left(x+y\right)\left(x^2+xy+y^2\right)\)

\(=a\left(x^2+2xy+y^2-xy\right)\)

\(=a\left[\left(x+y\right)^2-xy\right]=a\left(a^2-b\right)=a^3-ab\)

2 tháng 7 2017

\(a,x^2+y^2=\left(x+y\right)^2-2xy=a^2-2b\)

\(b,x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-2xy-xy\right]\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]\)

\(=a.\left(a^2-3b\right)\)

\(=a^3-3ab\)

2 tháng 7 2017

câu c bạn ơi

27 tháng 7 2019

Ta có: \(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^3-x^3y^2\) 

\(=\left[\left(x+y\right)^2-2xy\right]\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-x^2y^2\left(x+y\right)\) 

\(=\left(a^2-2b\right)\left(a^3-3ab\right)-ab^2\) 

 \(=a^5-5a^3b+5ab^2\) 

\(=a^5-5ab\left(a^2-b\right)\)

27 tháng 7 2019

\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^3-x^3y^2\)

\(=\left(\left(x+y\right)^2-2xy\right)\left(\left(x+y\right)^3-3xy\left(x+y\right)\right)-x^2y^2\left(x+y\right)\)

\(=\left(a^2-2b\right)\left(a^3-3ab\right)-ab^2\)

\(=a^5-5ab\left(a^2-b\right)\)

25 tháng 7 2017

giúp mik vs mik vs mik đang cần gấp huhu

23 tháng 11 2017

a)\(x+y=a\Rightarrow\left(x+y\right)^2=a^2\)

\(\Rightarrow x^2+2xy+y^2=a^2\Rightarrow x^2+y^2=a^2-2xy\Rightarrow x^2+y^2=a^2-2b\)

8 tháng 8 2020

\(x^7+y^7=\left(x^3+y^3\right)\left(x^4+y^4\right)-x^3y^4-x^4y^3\)

Biểu diễn các số hạng theo a, b

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3ab\)

\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left(a^2-2b\right)^2-2b^2\)

Khi đó:\(x^7+y^7=\left(a^3-3ab\right)\left[\left(a^2-2b\right)^2-2b^2\right]-ab^3\)

26 tháng 7 2020

Xài trò này chắc Oke :))

a)

Mình nghĩ là \(x^5+y^5\)nhó, nếu đề khác thì comment xuống mình nghĩ cách khác :p

\(49=\left(x+y\right)^2=x^2+y^2+2xy=25+2xy\Rightarrow xy=12\)

\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)

\(=\left(x^2+y^2\right)\left(x+y\right)\left(x^2+y^2-xy\right)-x^2y^2\left(x+y\right)\)

\(=25\cdot7\cdot\left(25-12\right)-12^2\cdot7\)

\(=1267\)

b)

\(xy^6+x^6y=xy\left(x^5+y^5\right)=P\left(x^5+y^5\right)\)

Ta tính \(x^5+y^5\) theo S và P

Dễ có:

\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)

\(=\left[\left(x+y\right)^2-2xy\right]\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-S^2P\)

\(=\left(S^2-2P\right)\left(S^3-3SP\right)-S^2P\)

\(=S^5-5S^3P+2SP^2-S^2P\)

Chắc không nhầm lẫn gì ở việc tính toán =)))

Bài 1: a) Cho a + b + c = 9, a2 + b2 + c2 = 141. Tính giá trị biểu thức M = ab + bc + cab) Cho x + y = 1. Tính giá trị của biểu thức B = x3 + 3xy + y3c) Cho x + y = a; x2 + y2 = b, x3 + y3 = c. Tính giá trị của biểu thức N = a3 - 3ab + 2cd) Cho x + y = a, x - y = b. Tính giá trị của biểu thức D = x3 - y3 theo a và be) Cho x + y = a, x2 + y2 = b. Tính giá trị của biểu thức E = x3 + y3 theo a và bf) Cho x + y = 1, xy= -1. Tính...
Đọc tiếp

Bài 1: 
a) Cho a + b + c = 9, a+ b+ c= 141. Tính giá trị biểu thức M = ab + bc + ca
b) Cho x + y = 1. Tính giá trị của biểu thức B = x3 + 3xy + y3
c) Cho x + y = a; x2 + y= b, x+ y= c. Tính giá trị của biểu thức N = a3 - 3ab + 2c
d) Cho x + y = a, x - y = b. Tính giá trị của biểu thức D = x- ytheo a và b
e) Cho x + y = a, x+ y= b. Tính giá trị của biểu thức E = x3 + ytheo a và b
f) Cho x + y = 1, xy= -1. Tính giá trị của các biểu thức x+ y2 , x+ y3 , (x2 - y2)2 , x+ y6
g) Cho x - y = 2, xy = 1. Tính giá trị của các biểu thức x+ y2, x3 - y3, (x2- y2)2, x- y6
h) Cho a + b + c = 0, a2+ b+ c= 1. Tính giá trị của biểu thức H = a+ b+ c4
i) Cho a + b = a+ b=1. Chứng minh: a+ b= a4+ b4
j) Cho x + y = a + b; x+ y= a+ b2. CMR: x2000+ y2000 = a2000+ b2000
k) Cho a+ b= 1; c+ d= 1; ac + bd = 0. CMR: ab + cd = 0 
 

3
21 tháng 10 2018

1/Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=81\)

\(\Rightarrow M=ab+bc+ca=\frac{\left(81-141\right)}{2}\)

26 tháng 9 2020

a,\(a+b+c=9\)

\(\Rightarrow\left(a+b+c\right)^2=81\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=81\)

Vì \(a^2+b^2+c^2=141\)

\(\Rightarrow2ab+2bc+2ca=-60\)

\(\Rightarrow2\left(ab+bc+ca\right)=-60\)

\(\Rightarrow ab+bc+ca=-30\)

Vậy ...