Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì x=5+y => x-y=5
đặt \(A=x^2+y\left(y-2x\right)+75\)
\(=x^2+y^2-2xy+75\)
\(=\left(x-y\right)^2+75\)
\(=5^2+75\)
=100
b) đặt \(B=x\left(x+2\right)+y\left(y-2\right)-2xy+65\)
\(=x^2+2x+y^2-2y-2xy+65\)
\(=\left(x^2+y^2-2xy\right)+\left(2x-2y\right)+65\)
\(=\left(x-y\right)^2+2\left(x-y\right)+65\)
\(=5^2+2.5+65\)
=100
Ta có : \(N=\left(x-y\right)^3-x^2+2xy-y^2\)
\(N=\left(x-y\right)^3-\left(x^2-2xy+y^2\right)\)
\(N=\left(x-y\right)^3-\left(x-y\right)^2\)
Thay \(x-y=-5\)vào ta được :
\(N=\left(-5\right)^3-\left(-5\right)^2\)
\(N=-125-25\)
\(N=-150\)
Vậy \(N=-150\)với \(x-y=-5\)
a) Ta có: A = (x + y)3 + 2x2 + 4xy + 2y2
A = 73 + 2(x2 + 2xy + y2)
A = 343 + 2(x + y)2
A = 343 + 2. 72
A = 343 + 98 = 441
b) B = (x - y)3 - x2 + 2xy - y2
=> B = (-5)3 - (x2 - 2xy + y2)
=> B = -125 - (x - y)2
=> B = -125 - (-5)2
=> B = -125 - 25 = -150
a) \(M=\left(x+y\right)^3+2x^2+4xy+2y^2\)
\(=7^3+2\left(x^2+2xy+y^2\right)\)
\(=343+2\left(x+y\right)^2\)
\(=343+2.7^2\)
\(=343+98=441\)
b) \(N=\left(x-y\right)^3-x^2+2xy-y^2\)
\(=\left(-5\right)^3-\left(x-y\right)^2\)
\(=-125-\left(-5\right)^2\)
\(=-125-25=-150\)
a: \(\dfrac{xy}{x^2+y^2}=\dfrac{5}{8}\)
=>\(\dfrac{xy}{5}=\dfrac{x^2+y^2}{8}=k\)
=>\(xy=5k;x^2+y^2=8k\)
\(A=\dfrac{8k-2\cdot5k}{8k+2\cdot5k}=\dfrac{-2}{18}=\dfrac{-1}{9}\)
b: Đặt \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=k\)
=>x=a*k; y=b*k; z=c*k
\(B=\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\dfrac{a^2k^2+b^2k^2+c^2k^2}{\left(a\cdot ak+b\cdot bk+c\cdot ck\right)^2}\)
\(=\dfrac{k^2\cdot\left(a^2+b^2+c^2\right)}{k^2\left(a^2+b^2+c^2\right)^2}=\dfrac{1}{a^2+b^2+c^2}\)
a) \(A=x^2+2xy+y^2-4x-4y+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=3^2-4.3+1=-2\)
b) \(B=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=7^2+2.7+37=100\)
c) \(C=x^2+4y^2-2x+10+4xy-4y\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
\(=5^2-2.5+10=25\)
a) \(A=x^2+2xy+y^2-4x-4v+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=3^2-4.3+1=-2\)
P = x3 + y3 - x2 - y2 + 3xy( x + y ) - 2xy + 3( x + y ) + 10
= ( x3 + y3 ) - ( x2 + 2xy + y2 ) + 3xy( x + y ) + 3.5 + 10
= ( x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 ) - ( x + y )2 + 3xy( x + y ) + 15 + 10
= [ ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 ) ] - 52 + 3xy( x + y ) + 25
= ( x + y )3 - 3xy( x + y ) - 25 + 3xy( x + y ) + 25
= 53 = 125
x 2 +y 2 xy = 8 5 ⇒x 2 +y 2 = 5 8xy \Rightarrow P=\frac{\frac{8xy}{5}-2xy}{\frac{8xy}{5}+2xy}=\frac{8xy-10xy}{8xy+10xy}=\frac{-2}{18}=-\frac{1}{9}⇒P= 5 8xy +2xy 5 8xy −2xy = 8xy+10xy 8xy−10xy = 18 −2 =− 9 1
x2 + y2 = x2 + 2xy + y2 - 2xy = (x + y)2 - 2.5 = 22 - 10 = -6
=> B = (x + y)(x2 - xy + y2) + (x + y)2 = 2.(-6 - 5) + 22 = -18
Ta có : \(x^2+2x+y^2-2y-2xy+65\)
\(=\left(x-y\right)^2+2\left(x-y\right)+65\)
Mà \(x=y+5\)
\(\Rightarrow x-y=5\)
- Thay x - y = 5 vào đa thức trên ta được :
\(=\left(x-y\right)^2+2\left(x-y\right)+65=100\)
Vậy ...